Behind the lines-actions of bacterial type III effector proteins in plant cells
- PMID: 28201715
- PMCID: PMC5091034
- DOI: 10.1093/femsre/fuw026
Behind the lines-actions of bacterial type III effector proteins in plant cells
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Keywords: type III effector; plant immunity; MAPK signaling; proteasome; cytoskeleton; phytohormones.
Figures












Similar articles
-
[Suppression of PAMP-triggered immunity (PTI) by effector proteins synthesized by phytopathogens and delivered into cells of infected plant].Postepy Biochem. 2019 Mar 22;65(1):58-71. doi: 10.18388/pb.2019_257. Postepy Biochem. 2019. PMID: 30901184 Polish.
-
Pattern recognition receptors and their interactions with bacterial type III effectors in plants.Genes Genomics. 2019 May;41(5):499-506. doi: 10.1007/s13258-019-00801-1. Epub 2019 Mar 4. Genes Genomics. 2019. PMID: 30830683 Review.
-
Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity.New Phytol. 2012 Sep;195(4):894-911. doi: 10.1111/j.1469-8137.2012.04210.x. Epub 2012 Jun 27. New Phytol. 2012. PMID: 22738163
-
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity.Microbiol Mol Biol Rev. 2016 Oct 26;80(4):1011-1027. doi: 10.1128/MMBR.00032-16. Print 2016 Dec. Microbiol Mol Biol Rev. 2016. PMID: 27784797 Free PMC article. Review.
-
Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria.Annu Rev Microbiol. 2006;60:425-49. doi: 10.1146/annurev.micro.60.080805.142251. Annu Rev Microbiol. 2006. PMID: 16753033 Review.
Cited by
-
Immunodiversity of the Arabidopsis ZAR1 NLR Is Conveyed by Receptor-Like Cytoplasmic Kinase Sensors.Front Plant Sci. 2020 Aug 21;11:1290. doi: 10.3389/fpls.2020.01290. eCollection 2020. Front Plant Sci. 2020. PMID: 32983191 Free PMC article.
-
Phylogenetic distribution and evolutionary dynamics of nod and T3SS genes in the genus Bradyrhizobium.Microb Genom. 2020 Sep;6(9):mgen000407. doi: 10.1099/mgen.0.000407. Epub 2020 Aug 12. Microb Genom. 2020. PMID: 32783800 Free PMC article.
-
DspA/E-Triggered Non-Host Resistance against E. amylovora Depends on the Arabidopsis GLYCOLATE OXIDASE 2 Gene.Int J Mol Sci. 2022 Apr 11;23(8):4224. doi: 10.3390/ijms23084224. Int J Mol Sci. 2022. PMID: 35457046 Free PMC article.
-
Predictive modeling of Pseudomonas syringae virulence on bean using gradient boosted decision trees.PLoS Pathog. 2022 Jul 25;18(7):e1010716. doi: 10.1371/journal.ppat.1010716. eCollection 2022 Jul. PLoS Pathog. 2022. PMID: 35877772 Free PMC article.
-
Identification of Indole-3-Acetic Acid-Regulated Genes in Pseudomonas syringae pv. tomato Strain DC3000.J Bacteriol. 2022 Jan 18;204(1):e0038021. doi: 10.1128/JB.00380-21. Epub 2021 Oct 18. J Bacteriol. 2022. PMID: 34662236 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources