Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 15;17(1):34.
doi: 10.1186/s12866-017-0953-2.

Costs and benefits of natural transformation in Acinetobacter baylyi

Affiliations

Costs and benefits of natural transformation in Acinetobacter baylyi

Nils Hülter et al. BMC Microbiol. .

Abstract

Background: Natural transformation enables acquisition of adaptive traits and drives genome evolution in prokaryotes. Yet, the selective forces responsible for the evolution and maintenance of natural transformation remain elusive since taken-up DNA has also been hypothesized to provide benefits such as nutrients or templates for DNA repair to individual cells.

Results: We investigated the immediate effects of DNA uptake and recombination on the naturally competent bacterium Acinetobacter baylyi in both benign and genotoxic conditions. In head-to-head competition experiments between DNA uptake-proficient and -deficient strains, we observed a fitness benefit of DNA uptake independent of UV stress. This benefit was found with both homologous and heterologous DNA and was independent of recombination. Recombination with taken-up DNA reduced survival of transformed cells with increasing levels of UV-stress through interference with nucleotide excision repair, suggesting that DNA strand breaks occur during recombination attempts with taken-up DNA. Consistent with this, we show that absence of RecBCD and RecFOR recombinational DNA repair pathways strongly decrease natural transformation.

Conclusions: Our data show a physiological benefit of DNA uptake unrelated to recombination. In contrast, recombination during transformation is a strand break inducing process that represents a previously unrecognized cost of natural transformation.

Keywords: Bacterial evolution; Competence; DNA repair; DprA; Horizontal gene transfer; Natural transformation.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Relative fitness of wildtype strain (a) and its ∆dprA derivative (b) grown in head-to-head competitions against the DNA uptake-deficient ∆comB-F mutant. The competitions were treated with a combination of an initial UV pulse of 216 J m−2 or no UV irradiation with a subsequent amendment of no DNA (DNase), homologous DNA or heterologous DNA. In each group n = 13. In the control competitions with no UV and no DNA both the wildtype and its ∆dprA derivative displayed a reduced fitness relative to KOM130 of w = 0.88 (0.83–0.92, 95% CI) and w = 0.86 (0.82–0.91, 95% CI), respectively, due to the biological cost of type IV pilus expression (Additional file 1: Fig. S1). Error bars indicate 95% confidence intervals. Significant differences between the treatment groups (pooled results of both UV- and UV+ competitions) are indicated by asterisks (** P < 0.001, *** P < 0.0001). A two-way ANOVA of all mean values is provided in (Additional file 1: Table S4)
Fig. 2
Fig. 2
Relative survival of the pooled total population of the wildtype (closed triangles and bold solid line, n = 16) and the transformant fractions obtained with either pSBP1 DNA (0.1 μg ml−1; open circles with dotted line, n = 10) or with homologous genomic DNA (2 μg ml−1; open squares with solid line, n = 6) with increasing levels of UV irradiation. We also determined the relative survival of the total population (closed triangles and bold dashed line, n = 10) and the transformant fraction in the ∆uvrA mutant obtained with homologous DNA (2 μg ml−1; open squares and dashed line, n = 10). Error bars denote the 95% confidence intervals. The transformation frequencies without UV irradiation were (7.7 ± 1.4) × 10−4 (pSBP1 DNA) and (2.5 ± 2.8) × 10−2 (genomic DNA) for the wildtype; and (1.9 ± 1.0) × 10−2 (genomic DNA) for the ∆uvrA mutant. Mean initial titers (CFU/ml) for the wildtype and the ∆uvrA mutant were 1.8 × 107 and 4.2 × 107, respectively
Fig. 3
Fig. 3
Formation of DNA double strand-breaks conferred by nucleotide excision repair during natural transformation. a: Grey lines: genomic DNA; grey spikes: UV-induced lesions. Black line: taken-up DNA single-strand with genetic marker (oval). b: Generation of DNA single-strand-breaks by UvrAB-directed, UvrBC-initiated cleavage of the damage-containing strand upstream and downstream of the lesions, and by RecA-mediated strand invasion of the taken-up DNA and cleavage of the displaced DNA strand. c: Partial repair of single-strand breaks: 1. by removal of the lesion-containing single-strand fragment (left lesion), fill-in synthesis, and covalent ligation (dark grey; catalysed by UvrD, DNA polymerase I, and DNA ligase, respectively); and 2. by covalent joining of the invaded taken-up strand with the genomic DNA at one side (downstream of the marker). Single-strand breaks persist when the UV lesion-containing strands are not removed (right lesion) and when an invaded DNA strand remains unligated at one end (upstream of the marker). One-sided ligation of the invaded DNA strand is common (see text). Following DNA replication (indicated by a replication fork approaching from the left end), single-strand breaks are converted into potentially lethal double-strand breaks
Fig. 4
Fig. 4
Natural transformation frequencies of A. baylyi wildtype and DNA recombination-impaired mutants. Transformation frequencies were obtained in liquid transformation experiments with genomic homologous DNA (0.1 μg ml−1) containing a kanamycin resistance marker gene and are given as means with 95% confidence intervals. The initial recipient titers are listed in (Additional file 1: Table S4)

Similar articles

Cited by

References

    1. Chen I, Christie PJ, Dubnau D. The ins and outs of DNA transfer in bacteria. Science. 2005;310(5753):1456–60. doi: 10.1126/science.1114021. - DOI - PMC - PubMed
    1. Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol. 2014;12(3):181–96. doi: 10.1038/nrmicro3199. - DOI - PubMed
    1. Johnsborg O, Eldholm V, Havarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol. 2007;158(10):767–78. doi: 10.1016/j.resmic.2007.09.004. - DOI - PubMed
    1. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev. 1994;58(3):563–602. - PMC - PubMed
    1. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3(9):711–21. doi: 10.1038/nrmicro1234. - DOI - PubMed

MeSH terms

LinkOut - more resources