Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug 15;257(1):207-16.
doi: 10.1016/0003-9861(87)90560-1.

Utilization of dihydroflavin mononucleotide and superoxide anion for the decyclization of L-tryptophan by murine epididymal indoleamine 2,3-dioxygenase

Utilization of dihydroflavin mononucleotide and superoxide anion for the decyclization of L-tryptophan by murine epididymal indoleamine 2,3-dioxygenase

Y Ozaki et al. Arch Biochem Biophys. .

Abstract

Dihydroflavin mononucleotide (FMNH2) together with a regenerating enzyme system effectively supported L-tryptophan decyclization by indoleamine 2,3-dioxygenase isolated from murine epididymis. The native murine dioxygenase was a monomeric protein with Mr 40,000 +/- 1000, an apparent pI of 4.9 +/- 0.1, and an optimum pH within the range of 7 to 8. Using FMNH2 with FMN oxidoreductase, the enzyme attained significantly higher activity than the apparent maximal activity obtained by using the other electron donor systems examined (e.g., riboflavin, FAD, tetrahydrobiopterin, methylene blue). A kinetic study with the FMNH2 cofactor suggested the occurrence of a complex reaction (L-tryptophan-FMNH2 interdependency) and a theoretical K'm of 14 microM or a Km of 13 microM was estimated for the substrate. L-Tryptophan 2,3-dioxygenation was competitively inhibited by L-5-hydroxytryptophan with a Ki of 1 microM. The reaction rate was reduced to less than 50% of that of the control in the presence of superoxide dismutase and was decreased to 3% of the control in the absence of catalase. Thus, superoxide anion does not appear to be the only form of O2 participating in the reaction. However, these data indicate that the activation of molecular oxygen is an essential factor for an optimum catalysis and a mechanism of FMNH2-dependent oxygenation of L-tryptophan by murine indoleamine 2,3-dioxygenase.

PubMed Disclaimer

LinkOut - more resources