Tailoring the thermal and electrical transport properties of graphene films by grain size engineering
- PMID: 28205514
- PMCID: PMC5316893
- DOI: 10.1038/ncomms14486
Tailoring the thermal and electrical transport properties of graphene films by grain size engineering
Abstract
Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation-adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ∼200 nm to ∼1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ∼3.8 × 109 W m-2 K-1, while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ∼0.01 eV and resistivity of ∼0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials.
Conflict of interest statement
The authors declare no competing financial interests.
Figures





References
-
- Geim A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009). - PubMed
-
- Novoselov K. S. et al.. A roadmap for graphene. Nature 490, 192–200 (2012). - PubMed
-
- Ren W. & Cheng H.-M. The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014). - PubMed
-
- Yu Q. et al.. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011). - PubMed
-
- Huang P. Y. et al.. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous