[Urinary Stone Analysis - What does the Future Hold in Store?]
- PMID: 28208191
- DOI: 10.1055/s-0042-120468
[Urinary Stone Analysis - What does the Future Hold in Store?]
Abstract
Analysis of the composition of a urinary stone is one of the most important steps in the clinical management of patients with urolithiasis. Fourier transform infrared spectroscopy, X-ray diffractometry and petrographic microscopy are the techniques currently used. Novel technical developments in recent years - such as Raman spectroscopy and hyperspectral imaging - have resulted in new approaches to improve urinary stone analysis. In future, table-top portable systems may be used that allow stones to be rapidly examined directly after the operation. These systems may even be integrated into lithotripsy laser systems.
© Georg Thieme Verlag KG Stuttgart · New York.
Similar articles
-
Automated analysis of urinary stone composition using Raman spectroscopy: pilot study for the development of a compact portable system for immediate postoperative ex vivo application.J Urol. 2013 Nov;190(5):1895-900. doi: 10.1016/j.juro.2013.06.024. Epub 2013 Jun 14. J Urol. 2013. PMID: 23770149
-
[Application and research progress of composition analysis of urinary calculi].Guang Pu Xue Yu Guang Pu Fen Xi. 2006 Apr;26(4):761-7. Guang Pu Xue Yu Guang Pu Fen Xi. 2006. PMID: 16836157 Chinese.
-
Composition and characteristics of urinary calculi from guinea pigs.J Am Vet Med Assoc. 2009 Jan 15;234(2):214-20. doi: 10.2460/javma.234.2.214. J Am Vet Med Assoc. 2009. PMID: 19210239
-
The elementome of calcium-based urinary stones and its role in urolithiasis.Nat Rev Urol. 2015 Oct;12(10):543-57. doi: 10.1038/nrurol.2015.208. Epub 2015 Sep 1. Nat Rev Urol. 2015. PMID: 26334088 Free PMC article. Review.
-
Urinary Stone Disease: Diagnosis, Medical Therapy, and Surgical Management.Med Clin North Am. 2018 Mar;102(2):265-277. doi: 10.1016/j.mcna.2017.10.004. Epub 2017 Dec 9. Med Clin North Am. 2018. PMID: 29406057 Review.
Cited by
-
Machine Learning for Renal Pathologies: An Updated Survey.Sensors (Basel). 2022 Jul 1;22(13):4989. doi: 10.3390/s22134989. Sensors (Basel). 2022. PMID: 35808481 Free PMC article. Review.
-
Dose independent characterization of renal stones by means of dual energy computed tomography and machine learning: an ex-vivo study.Eur Radiol. 2020 Mar;30(3):1397-1404. doi: 10.1007/s00330-019-06455-7. Epub 2019 Nov 26. Eur Radiol. 2020. PMID: 31773296
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources