Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug;9(2):236-50.
doi: 10.1016/0272-0590(87)90046-7.

Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires

Affiliations

Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires

B C Levin et al. Fundam Appl Toxicol. 1987 Aug.

Abstract

The toxicity of single and multiple fire gases is studied to determine whether the toxic effects of the combustion products from materials can be explained by the toxicological interactions (as indicated by lethality) of the primary fire gases or if minor, more obscure gases need to be considered. LC50 values for Fischer-344 rats have been calculated for the individual gases, carbon monoxide (CO), hydrogen cyanide (HCN), or decreased oxygen (O2), for 30-min exposures plus relevant postexposure periods using the NBS Toxicity Test Method. Combination experiments with CO and HCN indicate that they act in an additive manner. Synergistic effects have been found when the animals are exposed to certain combinations of CO and carbon dioxide (CO2). Five percent CO2 raised the threshold for deaths due to hypoxia and decreased the LC50 of HCN. Decreasing the O2 concentration in the presence of various mixtures of the other major fire gases increased the toxicity even further. A comparison of the concentrations of the major combustion products generated from a number of polymeric materials at their LC50 (30-min exposure plus 14-day postexposure) values with the combined pure gas results indicates that, in most cases, the observed toxicity may be explained by the toxicological interactions of the examined primary toxic fire gases. These results provide necessary information for the computer model currently being developed at the Center for Fire Research to predict the toxic hazard that people will experience under various fire scenarios.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources