Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 16;18(1):110.
doi: 10.1186/s12859-017-1530-2.

MARV: a tool for genome-wide multi-phenotype analysis of rare variants

Affiliations

MARV: a tool for genome-wide multi-phenotype analysis of rare variants

Marika Kaakinen et al. BMC Bioinformatics. .

Abstract

Background: Genome-wide association studies have enabled identification of thousands of loci for hundreds of traits. Yet, for most human traits a substantial part of the estimated heritability is unexplained. This and recent advances in technology to produce high-dimensional data cost-effectively have led to method development beyond standard common variant analysis, including single-phenotype rare variant and multi-phenotype common variant analysis, with the latter increasing power for locus discovery and providing suggestions of pleiotropic effects. However, there are currently no optimal methods and tools for the combined analysis of rare variants and multiple phenotypes.

Results: We propose a user-friendly software tool MARV for Multi-phenotype Analysis of Rare Variants. The tool is based on a method that collapses rare variants within a genomic region and models the proportion of minor alleles in the rare variants on a linear combination of multiple phenotypes. MARV provides analyses of all phenotype combinations within one run and calculates the Bayesian Information Criterion to facilitate model selection. The running time increases with the size of the genetic data while the number of phenotypes to analyse has little effect both on running time and required memory. We illustrate the use of MARV with analysis of triglycerides (TG), fasting insulin (FI) and waist-to-hip ratio (WHR) in 4,721 individuals from the Northern Finland Birth Cohort 1966. The analysis suggests novel multi-phenotype effects for these metabolic traits at APOA5 and ZNF259, and at ZNF259 provides stronger support for association (P TG+FI = 1.8 × 10-9) than observed in single phenotype rare variant analyses (P TG = 6.5 × 10-8 and P FI = 0.27).

Conclusions: MARV is a computationally efficient, flexible and user-friendly software tool allowing rapid identification of rare variant effects on multiple phenotypes, thus paving the way for novel discoveries and insights into biology of complex traits.

Keywords: High-dimensional data; Multi-phenotype analysis; Rare variant analysis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Workflow of a MARV run including required files, commands and resulting output files
Fig. 2
Fig. 2
Examples of the required input file formats for MARV and the resulting output files
Fig. 3
Fig. 3
QQ-plot of MARV analysis results on triglycerides, fasting insulin and waist-to-hip ratio in the NFBC1966
Fig. 4
Fig. 4
Manhattan plot of MARV analysis results on triglycerides, fasting insulin and waist-to-hip ratio in the NFBC1966. Genes reaching genome-wide significance (P < 1.67 × 10−6) are annotated

Similar articles

Cited by

References

    1. Schatz MC. Biological data sciences in genome research. Genome Res. 2015;25:1417–22. doi: 10.1101/gr.191684.115. - DOI - PMC - PubMed
    1. McVean GA, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Donnelly P, Eichler EE, Flicek P, Gabriel SB, Gibbs RA, Green ED, Hurles ME, Knoppers BM, Korbel JO, Lander ES, Lee C, Lehrach H, Mardis ER, Marth GT, McVean GA, Nickerson DA, Schmidt JP, Sherry ST, Wang J, Wilson RK, Gibbs RA, Dinh H, Kovar C, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(V):56–65. doi: 10.1038/nature11632. - DOI - PMC - PubMed
    1. Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, Perry JRB, Xu C, Futema M, Lawson D, Iotchkova V, Schiffels S, Hendricks AE, Danecek P, Li R, Floyd J, Wain LV, Barroso I, Humphries SE, Hurles ME, Zeggini E, Barrett JC, Plagnol V, Brent Richards J, Greenwood CMT, Timpson NJ, Durbin R, Soranzo N, Bala S, Clapham P, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526:82–90. doi: 10.1038/nature14962. - DOI - PMC - PubMed
    1. The Haplotype Reference Consortium [http://www.haplotype-reference-consortium.org/home]. Accessed 8 Feb 2017.
    1. Huang J, Howie B, McCarthy S, Memari Y, Walter K, Min JL, Danecek P, Malerba G, Trabetti E, Zheng H-F, UK10K Consortium. Gambaro G, Richards JB, Durbin R, Timpson NJ, Marchini J, Soranzo N. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat Commun. 2015;6:8111. doi: 10.1038/ncomms9111. - DOI - PMC - PubMed