Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul;217(1):76.e1-76.e8.
doi: 10.1016/j.ajog.2017.02.007. Epub 2017 Feb 14.

Quantitative analysis of fetal facial morphology using 3D ultrasound and statistical shape modeling: a feasibility study

Affiliations
Free article

Quantitative analysis of fetal facial morphology using 3D ultrasound and statistical shape modeling: a feasibility study

Andrea Dall'Asta et al. Am J Obstet Gynecol. 2017 Jul.
Free article

Abstract

Background: The antenatal detection of facial dysmorphism using 3-dimensional ultrasound may raise the suspicion of an underlying genetic condition but infrequently leads to a definitive antenatal diagnosis. Despite advances in array and noninvasive prenatal testing, not all genetic conditions can be ascertained from such testing.

Objectives: The aim of this study was to investigate the feasibility of quantitative assessment of fetal face features using prenatal 3-dimensional ultrasound volumes and statistical shape modeling. STUDY DESIGN: Thirteen normal and 7 abnormal stored 3-dimensional ultrasound fetal face volumes were analyzed, at a median gestation of 29+4 weeks (25+0 to 36+1). The 20 3-dimensional surface meshes generated were aligned and served as input for a statistical shape model, which computed the mean 3-dimensional face shape and 3-dimensional shape variations using principal component analysis.

Results: Ten shape modes explained more than 90% of the total shape variability in the population. While the first mode accounted for overall size differences, the second highlighted shape feature changes from an overall proportionate toward a more asymmetric face shape with a wide prominent forehead and an undersized, posteriorly positioned chin. Analysis of the Mahalanobis distance in principal component analysis shape space suggested differences between normal and abnormal fetuses (median and interquartile range distance values, 7.31 ± 5.54 for the normal group vs 13.27 ± 9.82 for the abnormal group) (P = .056).

Conclusion: This feasibility study demonstrates that objective characterization and quantification of fetal facial morphology is possible from 3-dimensional ultrasound. This technique has the potential to assist in utero diagnosis, particularly of rare conditions in which facial dysmorphology is a feature.

Keywords: 3-dimensional ultrasound; facial dysmorphism; genetic syndrome; prenatal diagnosis; principal component analysis; statistical shape modeling.

PubMed Disclaimer

Similar articles

Cited by

Publication types