Binding of high density lipoproteins to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface
- PMID: 2820959
Binding of high density lipoproteins to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface
Abstract
Cultured cells have on their cell surface a specific high-affinity binding site (receptor) for high density lipoproteins (HDL) which appears to promote cholesterol efflux. In this study we characterized the cellular mechanisms involved in HDL receptor-mediated transport of cholesterol from cultured human fibroblasts and bovine aortic endothelial cells. HDL3, chemically modified by tetranitromethane (TNM-HDL3), is not recognized by this receptor and was used as a control for efflux not mediated by HDL receptor binding. HDL3 and TNM-HDL3 were found to be equally effective in causing efflux of plasma membrane cholesterol radiolabeled with [3H]cholesterol. However, HDL3 was much more effective than TNM-HDL3 in causing efflux of [3H]cholesterol associated with intracellular membranes. By measuring movement of endogenously synthesized [3H]cholesterol to the plasma membrane, and into the medium, we found that HDL3 induced a rapid movement of [3H]cholesterol from a preplasma membrane compartment to the plasma membrane that preceded [3H]cholesterol efflux. This effect was not observed with TNM-HDL3. Thus, receptor binding of HDL3 appears to facilitate removal of cellular cholesterol from specific intracellular pools by initiation of translocation of intracellular cholesterol to the plasma membrane.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
