Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Oct 5;262(28):13440-8.

Intramolecular flip between two alternative forms of complex formed from a heme fragment and apoprotein of horse cytochrome c

Affiliations
  • PMID: 2820970
Free article

Intramolecular flip between two alternative forms of complex formed from a heme fragment and apoprotein of horse cytochrome c

M A Juillerat et al. J Biol Chem. .
Free article

Abstract

The previous studies have shown that (a) noncovalent interactions of the ferro-heme fragment of residues 1-38 and apoprotein (1-104) of horse cytochrome c simultaneously and specifically form two isomeric complexes, types I and II resembling the native protein (the redundant residues flexibly protruding from the ordered structure); (b) the type II form but not type I appears to bind to CO; and (c) residues 39-55 are more flexible for type II form than type I (Parr, G. R., and Taniuchi, H. (1981) J. Biol. Chem. 256, 125-132). In the present study, we investigated 1) kinetics and thermodynamics of interconversion between type I and II forms of complex ferro-(1-38)-H.(1-104); 2) the properties of the CO binding population; 3) the rate of dissociation of complexes ferri- and ferro-(1-38)-H.(39-104) (mimicking type II form); and 4) thermal transition of the 695-nm absorption band and biological activity of complexes. The results indicate (a) interconversion between type I and II forms of complex ferro-(1-38)-H.(1-104) occurs without going through dissociation (t1/2 less than or equal to 12 min at 10 degrees C) and is associated with delta H (= -7.2 +/- 3.7 kcal/mol at 10 degrees C) favoring type I form and delta S (= 23 +/- 13 e.u. at 10 degrees C) favoring type II; (b) the CO-binding population correlates with type II; and (c) change from the ferrous to the ferric state of heme appears to perturb the thermodynamic relationship between type I and II forms. Interpreting the results and available evidence, we suggest that "intramolecular" flip between ferro-type I and ferro-type II forms would establish the Boltzmann distribution of these two distinctly different energy states, type I form having more strengthened interatomic interactions and type II more pronounced internal motion.

PubMed Disclaimer

Similar articles

LinkOut - more resources