Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 1;9(2):e191-e195.
doi: 10.4317/jced.53166. eCollection 2017 Feb.

Effect of the TiO2 nanoparticles on the selected physical properties of mineral trioxide aggregate

Affiliations

Effect of the TiO2 nanoparticles on the selected physical properties of mineral trioxide aggregate

Mohammad Samiei et al. J Clin Exp Dent. .

Abstract

Background: Some of the efforts to improve the properties of Mineral Trioxide Aggregate (MTA) include incorporation of some nanoparticles such as Titanium dioxide (TiO2). The aim of this study was to evaluate the effect of TiO2 nanoparticles on the setting time, working time, push-out bond strength and compressive strength of MTA.

Material and methods: The physical properties to be evaluated were determined using the ISO 6786:2001 and 9917 specifications. Fifteen samples of each material (MTA or MTA with 1% weight ratio of TiO2 Nanoparticles) were prepared for any evaluated physical property. Data were analyzed using descriptive statistics and T-test. Statistical significance was set at P<0.05.

Results: There was the significant effect of the material type (presence and absence of TiO2 nanoparticles) on the push-out bond strength, compressive strength, working time and setting time, with significantly higher values achieved in the group with TiO2 nanoparticles than the group without these particles (P=0.01 for the setting time and compressive strength, P=0.03 for the working time and P=0.001 for the bond strength).

Conclusions: Based on the findings of this in vitro study, incorporation of the TiO2 nanoparticles with weight ratio of 1% increased the setting time, working time, compressive strength and push out bond strength of MTA. Key words:Mineral trioxide aggregate, nanoparticles, physical properties, titanium dioxide.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest statement:The authors deny any conflict of interest related to this study.

References

    1. Ghasemi N, Rahimi S, Lotfi M, Solaimanirad J, Shahi S, Shafaie H. Effect of Mineral Trioxide Aggregate, Calcium-Enriched Mixture Cement and Mineral Trioxide Aggregate with Disodium Hydrogen Phosphate on BMP-2 Production. Iran Endod J. 2014;9:220–4. - PMC - PubMed
    1. Samiei M, Aghazadeh M, Lotfi M, Shakoei S, Aghazadeh Z, Vahid Pakdel SM. Antimicrobial Efficacy of Mineral Trioxide Aggregate with and without Silver Nanoparticles. Iran Endod J. 2013;8:166–70. - PMC - PubMed
    1. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod. 2010;36:16–27. - PubMed
    1. Shahi S, Ghasemi N, Rahimi S, Yavari H, Janani M, Mokhtari H. The Effect of Different Mixing Methods on Working Time, Setting Time, Dimensional Changes and Film Thickness of Mineral Trioxide Aggregate and Calcium-Enriched Mixture. Iran Endod J. 2015;10:248–51. - PMC - PubMed
    1. Mestieri LB, Tanomaru-Filho M, Gomes-Cornelio AL, Salles LP, Bernardi MI, Guerreiro-Tanomaru JM. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles. J Appl Oral Sci. 2014;22:554–9. - PMC - PubMed

LinkOut - more resources