Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun;1863(6):1539-1555.
doi: 10.1016/j.bbadis.2017.02.017. Epub 2017 Feb 16.

Mitochondrial DNA maintenance defects

Affiliations
Free article
Review

Mitochondrial DNA maintenance defects

Ayman W El-Hattab et al. Biochim Biophys Acta Mol Basis Dis. 2017 Jun.
Free article

Abstract

The maintenance of mitochondrial DNA (mtDNA) depends on a number of nuclear gene-encoded proteins including a battery of enzymes forming the replisome needed to synthesize mtDNA. These enzymes need to be in balanced quantities to function properly that is in part achieved by exchanging intramitochondrial contents through mitochondrial fusion. In addition, mtDNA synthesis requires a balanced supply of nucleotides that is achieved by nucleotide recycling inside the mitochondria and import from the cytosol. Mitochondrial DNA maintenance defects (MDMDs) are a group of diseases caused by pathogenic variants in the nuclear genes involved in mtDNA maintenance resulting in impaired mtDNA synthesis leading to quantitative (mtDNA depletion) and qualitative (multiple mtDNA deletions) defects in mtDNA. Defective mtDNA leads to organ dysfunction due to insufficient mtDNA-encoded protein synthesis, resulting in an inadequate energy production to meet the needs of affected organs. MDMDs are inherited as autosomal recessive or dominant traits, and are associated with a broad phenotypic spectrum ranging from mild adult-onset ophthalmoplegia to severe infantile fatal hepatic failure. To date, pathogenic variants in 20 nuclear genes known to be crucial for mtDNA maintenance have been linked to MDMDs, including genes encoding enzymes of mtDNA replication machinery (POLG, POLG2, TWNK, TFAM, RNASEH1, MGME1, and DNA2), genes encoding proteins that function in maintaining a balanced mitochondrial nucleotide pool (TK2, DGUOK, SUCLG1, SUCLA2, ABAT, RRM2B, TYMP, SLC25A4, AGK, and MPV17), and genes encoding proteins involved in mitochondrial fusion (OPA1, MFN2, and FBXL4).

Keywords: mitochondrial DNA (mtDNA); mitochondrial diseases; mitochondrial fusion; mtDNA depletion syndromes; mtDNA replication; multiple mtDNA deletions.

PubMed Disclaimer

MeSH terms