Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 15:496:177-187.
doi: 10.1016/j.jcis.2017.02.023. Epub 2017 Feb 13.

Preparation of core/shell nanostructure Fe(3)O(4)@PEG400-SO(3)H as heterogeneous and magnetically recyclable nanocatalyst for one-pot synthesis of substituted pyrroles by Paal-Knorr reaction at room temperature

Affiliations

Preparation of core/shell nanostructure Fe(3)O(4)@PEG400-SO(3)H as heterogeneous and magnetically recyclable nanocatalyst for one-pot synthesis of substituted pyrroles by Paal-Knorr reaction at room temperature

Fahimeh Bonyasi et al. J Colloid Interface Sci. .

Abstract

An efficient procedure has been proposed for the loading of sulfonic acid groups on the surface of polyethylene glycol 400 (PEG400)-encapsulated Fe3O4 nanoparticles to synthesize a core-shell Fe3O4@PEG400-SO3H nano catalyst. Surface functionalization of magnetic particles in such a way is a refined method of bridging the gap amongst heterogeneous and homogeneous catalysis. The procured nano catalyst was classified through Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), wavelength-dispersive X-ray spectroscopy (WDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), BET, and back titration. The nanoparticles have been utilized as a convenient catalyst for synthesizing a variety of N-substituted pyrroles via Paal-Knorr reactions of γ-diketones with amines, diamines or triamines at room temperature under solvent-free conditions. Notably, the newly produced catalyst was recoverable and recyclable (9 times) without any noticeable decrease in its activity.

Keywords: Core/shell; Green chemistry; Magnetic; Pyrroles; Sulfonic acid.

PubMed Disclaimer

Publication types

LinkOut - more resources