Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 21;13(1):58.
doi: 10.1186/s12917-017-0977-8.

Antimicrobial resistance and genomic rep-PCR fingerprints of Pseudomonas aeruginosa strains from animals on the background of the global population structure

Affiliations

Antimicrobial resistance and genomic rep-PCR fingerprints of Pseudomonas aeruginosa strains from animals on the background of the global population structure

Isa Serrano et al. BMC Vet Res. .

Abstract

Background: Pseudomonas aeruginosa is an important human opportunistic pathogen responsible for fatal nosocomial infections worldwide, and has emerged as a relevant animal pathogen. Treatment options are dramatically decreasing, due to antimicrobial resistance and the microorganism's large versatile genome. Antimicrobial resistance profiles, serotype frequency and genomic profile of unrelated P. aeruginosa isolates of veterinary origin (n = 73), including domesticated, farm, zoo and wild animals mainly from Portugal were studied. The genomic profile, determined by DiversiLab system (Rep-PCR-based technique), was compared with the P. aeruginosa global population structure to evaluate their relatedness.

Results: Around 40% of the isolates expressed serotypes O6 (20.5%) and O1 (17.8%). A total of 46.6% of isolates was susceptible to all antimicrobials tested. Isolates obtained from most animals were non-multidrug resistant (86.3%), whereas 11% were multidrug resistant, MDR (non-susceptible to at least one agent in ≥ three antimicrobial categories), and 2.7% extensively drug resistant, XDR (non-susceptible to at least one agent in all but two or fewer antimicrobial categories). Resistance percentages were as follows: amikacin (0.0%), aztreonam (41.1%), cefepime (9.6%), ceftazidime (2.7%), ciprofloxacin (15.1%), colistin (0.0%), gentamicin (12.3%), imipenem (1.4%), meropenem (1.4%), piperacillin + tazobactam (12.3%), ticarcillin (16.4%), ticarcillin + clavulanic acid (17.8%), and tobramycin (1.4%). Animal isolates form a population with a non-clonal epidemic structure indistinguishable from the global P. aeruginosa population structure, where no specific 'animal clonal lineage' was detected.

Conclusions: Serotypes O6 and O1 were the most frequent. Serotype frequency and antimicrobial resistance patterns found in P. aeruginosa from animals were as expected for this species. This study confirms earlier results that P. aeruginosa has a non-clonal population structure, and shows that P. aeruginosa population from animals is homogeneously scattered and indistinguishable from the global population structure.

Keywords: Animal origin; Antimicrobials; Environment; MDR; Non-clonal; Population; Pseudomonas aeruginosa; Rep-PCR; Serotype; XDR.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Normalized rep-PCR patterns and dendrogram for a total of 151 P. aeruginosa isolates: 73 P. aeruginosa isolates of this study plus 5 animal isolates not fully characterized (all delineated in blue), and 73 P. aeruginosa isolates from clinic (animal and human) and environmental origin from a previous study [4]. DiversiLab dendrogram based on UPGMA and Pearson correlation coefficient. Percentages of similarity are shown below the dendrogram

Similar articles

Cited by

References

    1. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2(9):1051–1060. doi: 10.1016/S1286-4579(00)01259-4. - DOI - PubMed
    1. Talbot GH, Bradley J, Edwards JE, Jr, Gilbert D, Scheld M, Bartlett JG. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis. 2006;42(5):657–668. doi: 10.1086/499819. - DOI - PubMed
    1. Goldberg JB. Pseudomonas: global bacteria. Trends Microbiol. 2000;8(2):55–57. doi: 10.1016/S0966-842X(99)01671-6. - DOI - PubMed
    1. Pirnay JP, De Vos D, Cochez C, Bilocq F, Vanderkelen A, Zizi M, Ghysels B, Cornelis P. Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol. 2002;4(12):898–911. doi: 10.1046/j.1462-2920.2002.00321.x. - DOI - PubMed
    1. Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, Deschaght P, Vaneechoutte M, Jennes S, Pitt T, et al. Pseudomonas aeruginosa population structure revisited. PloS One. 2009;4(11) doi: 10.1371/journal.pone.0007740. - DOI - PMC - PubMed

MeSH terms