Enterobacter cloacae Complex Isolates Harboring blaNMC-A or blaIMI-Type Class A Carbapenemase Genes on Novel Chromosomal Integrative Elements and Plasmids
- PMID: 28223374
- PMCID: PMC5404547
- DOI: 10.1128/AAC.02578-16
Enterobacter cloacae Complex Isolates Harboring blaNMC-A or blaIMI-Type Class A Carbapenemase Genes on Novel Chromosomal Integrative Elements and Plasmids
Abstract
Carbapenem-resistant Enterobacter cloacae complex isolates submitted to a reference laboratory from 2010 to 2015 were screened by PCR for seven common carbapenemase gene groups, namely, KPC, NDM, OXA-48, VIM, IMP, GES, and NMC-A/IMI. Nineteen of the submitted isolates (1.7%) were found to harbor Ambler class A blaNMC-A or blaIMI-type carbapenemases. All 19 isolates were resistant to at least one carbapenem but susceptible to aminoglycosides, trimethoprim-sulfamethoxazole, tigecycline, and ciprofloxacin. Most isolates (17/19) gave positive results with the Carba-NP test for phenotypic carbapenemase detection. Isolates were genetically diverse by pulsed-field gel electrophoresis macrorestriction analysis, multilocus sequence typing, and hsp60 gene analysis. The genes were found in various Enterobacter cloacae complex species; however, blaNMC-A was highly associated with Enterobacter ludwigii Whole-genome sequencing and bioinformatics analysis revealed that all NMC-A (n = 10), IMI-1 (n = 5), and IMI-9 (n = 2) producers harbored the carbapenemase gene on EludIMEX-1-like integrative mobile elements (EcloIMEXs) located in the identical chromosomal locus. Two novel genes, blaIMI-5 and blaIMI-6, were harbored on different IncFII-type plasmids. Enterobacter cloacae complex isolates harboring blaNMC-A/IMI-type carbapenemases are relatively rare in Canada. Though mostly found integrated into the chromosome, some variants are located on plasmids that may enhance their mobility potential.
Keywords: carbapenemase.
© Crown copyright 2017.
Figures
References
-
- Hoffmann H, Stindl S, Ludwig W, Stumpf A, Mehlen A, Heesemann J, Monget D, Schleifer KH, Roggenkamp A. 2005. Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Syst Appl Microbiol 28:196–205. doi:10.1016/j.syapm.2004.12.010. - DOI - PubMed
-
- Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. 2013. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319. doi:10.1016/j.syapm.2013.03.005. - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
