Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 31;36(3):325-332.
doi: 10.4012/dmj.2016-203. Epub 2017 Feb 22.

Osteogenic induction of bone marrow mesenchymal cells on electrospun polycaprolactone/chitosan nanofibrous membrane

Affiliations
Free article

Osteogenic induction of bone marrow mesenchymal cells on electrospun polycaprolactone/chitosan nanofibrous membrane

Ying He et al. Dent Mater J. .
Free article

Abstract

A novel chitosan/polycaprolactone (CS/PCL) nanofibrous membrane by electrospinning was developed for guided tissue regeneration (GTR) to improve mechanical properties and to promote osteogenic differentiation. Firstly, chitosan and PCL solutions of different weight ratios (0/100, 30/70, 50/50) were mixed and then electrospun. Our data demonstrated that the CS/PCL (30/70) nanofibrous membrane promoted an increased rBMSCs proliferation when compared to the CS/PCL (50/50) membrane and pure PCL (0/100) membrane. The highest ALP activity and extracellular calcium deposit were observed on the CS/PCL (30/70) nanofibrous membrane, followed by the CS/PCL (50/50) and pure PCL nanofibrous membrane. Furthermore, the expression of osteocalcin (OCN) and Runx2 were also significantly higher on the CS/PCL (30/70, 50/50) nanofibrous membrane as compared to the pure PCL nanofibrous membrane. In conclusion, the electrospun CS/PCL nanofibrous membrane was found to be a biocompatible material that could stimulate osteogenic differentiation, suggesting that the novel CS/PCL membrane has an interesting potential as use for GTR.

Keywords: Bone marrow mesenchymal stem cell; Chitosan; Electrospun; Osteogenic differentiation; Polycaprolactone.

PubMed Disclaimer