Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2017 Feb 23;16(1):27.
doi: 10.1186/s12933-017-0503-0.

Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes

Affiliations
Randomized Controlled Trial

Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes

Alessandra Dei Cas et al. Cardiovasc Diabetol. .

Abstract

Background: Fewer circulating endothelial progenitor cells (EPCs) and increased plasma (C-term) stromal cell-derived factor 1α (SDF-1α), a substrate of DPP-4, are biomarkers, and perhaps mediators, of cardiovascular risk and mortality. Short-term/acute treatment with DPP-4 inhibitors improve EPC bioavailability; however, long-term effects of DPP-4i on EPCs bioavailability/plasma (C-term) SDF-1α are unknown.

Methods: Randomized (2:1) open-label trial to compare the effects of vildagliptin (V) (100 mg/day) vs glibenclamide (G) (2.5 mg bid to a maximal dose of 5 mg bid) on circulating EPC levels at 4 and 12 months of treatment in 64 patients with type 2 diabetes in metformin failure. At baseline, and after 4 and 12 months, main clinical/biohumoral parameters, inflammatory biomarkers, concomitant therapies, EPC number (CD34+/CD133+/KDR+/106 cytometric events) and plasma (C-term) SDF-1α (R&D system) were assessed.

Results: Baseline characteristics were comparable in the two groups. V and G similarly and significantly (p < 0.0001) improved glucose control. At 12 months, V significantly increased EPC number (p < 0.05) and significantly reduced (C-term) SDF-1α plasma levels (p < 0.01) compared to G, with no differences in inflammatory biomarkers.

Conclusions: V exerts a long-term favorable effect on EPC and (C-term) SDF-1α levels at glucose equipoise, thereby implying a putative beneficial effect on vascular integrity. Trial registration Clinical Trials number: NCT01822548; name: Effect of Vildagliptin vs. Glibenclamide on Circulating Endothelial Progenitor Cell Number Type 2 Diabetes. Registered 28 March, 2013.

Keywords: Cardiovascular risk; DPP-4 inhibitors; EPC; SDF-1α.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
EPC number evaluation. Flow-cytometry analysis scatter plots to assess EPC number. Within the lymphomonocyte population (a) CD34 (b) and CD133 (c) positive cells were gated and evaluated for the expression of KDR to identify CD34+/CD133+/KDR+ cells (d)
Fig. 2
Fig. 2
Consort flow chart. The figure shows the consort flow chart according to ITT analysis
Fig. 3
Fig. 3
Treatment effect. The figure displays the treatment effect (β-coefficient and SE) of vildagliptin (treating glibenclamide as reference group) on EPC number (a) and SDF-1α levels (b) in repeated measure GLM models after adjustment for baseline values. (*p < 0.05; **p < 0.01)

Similar articles

Cited by

References

    1. Fadini GP, Avogaro A. Cell-based methods for ex vivo evaluation of human endothelial biology. Cardiovasc Res. 2010;87(1):12–21. doi: 10.1093/cvr/cvq119. - DOI - PubMed
    1. Kim KA, Shin YJ, Kim JH, Lee H, Noh SY, Jang SH, Bae ON, et al. Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms. Arch Pharm Res. 2012;35(2):223–234. doi: 10.1007/s12272-012-0203-y. - DOI - PubMed
    1. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006;26(9):2140–2146. doi: 10.1161/01.ATV.0000237750.44469.88. - DOI - PubMed
    1. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999–1007. doi: 10.1056/NEJMoa043814. - DOI - PubMed
    1. Rigato M, Avogaro A, Fadini GP. Levels of circulating progenitor cells, cardiovascular outcomes and death: a meta-analysis of prospective observational studies. Circ Res. 2016;118(12):1930–1939. doi: 10.1161/CIRCRESAHA.116.308366. - DOI - PubMed

Publication types

MeSH terms

Associated data