Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Feb 7;17(2):1-97.
eCollection 2017.

Percutaneous Ventricular Assist Devices: A Health Technology Assessment

Collaborators
Review

Percutaneous Ventricular Assist Devices: A Health Technology Assessment

Health Quality Ontario. Ont Health Technol Assess Ser. .

Abstract

Background: Percutaneous coronary intervention (PCI)-using a catheter to place a stent to keep blood vessels open-is increasingly used for high-risk patients who cannot undergo surgery. Cardiogenic shock (when the heart suddenly cannot pump enough blood) is associated with a high mortality rate. The percutaneous ventricular assist device can help control blood pressure and increase blood flow in these high-risk conditions. This health technology assessment examined the benefits, harms, and budget impact of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock. We also analyzed cost-effectiveness of the Impella device in high-risk PCI.

Methods: We performed a systematic search of the literature for studies examining the effects of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on hemodynamic stability, mortality, major adverse cardiac events, bleeding, and vascular complications. We developed a Markov decision-analytical model to assess the cost- effectiveness of Impella devices versus intra-aortic balloon pumps (IABPs), calculated incremental cost-effectiveness ratios (ICERs) using a 10-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. The economic model was conducted from the perspective of the Ontario Ministry of Health and Long-Term Care.

Results: Eighteen studies (one randomized controlled trial and 10 observational studies for high-risk PCI, and one randomized controlled trial and six observational studies for cardiogenic shock) were included in the clinical review. Compared with IABPs, Impella 2.5, one model of the device, improved hemodynamic parameters (GRADE low-very low) but showed no significant difference in mortality (GRADE low), major adverse cardiac events (GRADE low), bleeding (GRADE low), or vascular complications (GRADE low) in high-risk PCI and cardiogenic shock. No randomized controlled trials or prospective observational studies with a control group have studied Impella CP and Impella 5.0 (other models of the device) in patients undergoing high-risk PCI or patients with cardiogenic shock. The economic model predicted that treatment with the Impella device would have fewer quality-adjusted life-years (QALYs) and higher costs than IABP in high-risk PCI patients. These observations were consistent even when uncertainty in model inputs and parameters was considered. We estimated that adopting Impella would increase costs by $2.9 to $11.5 million per year.

Conclusions: On the basis of evidence of low to very low quality, Impella 2.5 devices were associated with improved hemodynamic stability, but had mortality rates and safety profile similar to IABPs in high-risk PCI and cardiogenic shock. Our cost-effectiveness analysis indicated that Impella 2.5 is likely associated with greater costs and fewer quality-adjusted life years than IABP.

PubMed Disclaimer

Figures

Figure 1:
Figure 1:. PRISMA Flow Diagram for Clinical Evidence Review
Figure 2:
Figure 2:. PRISMA Flow Diagram for Economic Evidence Review
Figure 3:
Figure 3:. Impella 2.5 Versus IABP, Decision-Analytic Tree and Long-Term Markov Model
Figure 4:
Figure 4:. Incremental Cost and QALYs of Impella 2.5 Versus IABP
Figure 5:
Figure 5:. Two-Way Sensitivity Analysis: Mortality Ratea of Two Treatments in First Month
Figure 6:
Figure 6:. Total Volume of Impella Devices and IABPs Implanted in Ontario
Figure 7:
Figure 7:. Indications for Implantation of Impella Devices and IABPs in Ontario, Fiscal Year 2015/16

Similar articles

Cited by

References

    1. Rihal CS, Naidu SS, Givertz MM, Szeto WY, Burke JA, Kapur NK, et al. 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care (Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology - Association Canadienne de Cardiologie d'intervention). J Card Fail. 2015;21(6):499–518. - PubMed
    1. Kar B, Basra SS, Shah NR, Loyalka P. Percutaneous circulatory support in cardiogenic shock: interventional bridge to recovery. Circulation. 2012;125(14):1809–17. - PubMed
    1. Babaev A, Frederick PD, Pasta DJ, Every N, Sichrovsky T, Hochman JS, et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2005;294(4):448–54. - PubMed
    1. Goldberg RJ, Samad NA, Yarzebski J, Gurwitz J, Bigelow C, Gore JM. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med. 1999;340(15):1162–8. - PubMed
    1. Dixon SR, Henriques JP, Mauri L, Sjauw K, Civitello A, Kar B, et al. A prospective feasibility trial investigating the use of the Impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (the PROTECT I trial): initial U.S. experience. JACC Cardiovasc Interv. 2009;2(2):91–6. - PubMed

LinkOut - more resources