Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2017 Feb 24;12(2):e0172698.
doi: 10.1371/journal.pone.0172698. eCollection 2017.

The role of neuromedin U in adiposity regulation. Haplotype analysis in European children from the IDEFICS Cohort

Affiliations
Multicenter Study

The role of neuromedin U in adiposity regulation. Haplotype analysis in European children from the IDEFICS Cohort

Francesco Gianfagna et al. PLoS One. .

Abstract

Background and aims: Neuromedin U (NMU) is a hypothalamic neuropeptide with important roles in several metabolic processes, recently suggested as potential therapeutic target for obesity. We analysed the associations between NMU gene variants and haplotypes and body mass index (BMI) in a large sample of European children.

Methods and results: From a large European multi-center study on childhood obesity, 4,528 children (2.0-9.9 years, mean age 6.0±1.8 SD; boys 52.2%) were randomly selected, stratifying by age, sex and country, and genotyped for tag single nucleotide polymorphisms (SNPs; rs6827359, T:C; rs12500837, T:C; rs9999653,C:T) of NMU gene, then haplotypes were inferred. Regression models were applied to estimate the associations between SNPs or haplotypes and BMI as well as other anthropometric measures. BMI was associated with all NMU SNPs (p<0.05). Among five haplotypes inferred, the haplotype carrying the minor alleles (CCT, frequency = 22.3%) was the only associated with lower BMI values (beta = -0.16, 95%CI:-0.28,-0.04, p = 0.006; z-score, beta = -0.08, 95%CI:-0.14,-0.01, p = 0.019) and decreased risk of overweight/obesity (OR = 0.81, 95%CI:0.68,0.97, p = 0.020) when compared to the most prevalent haplotype (codominant model). Similar significant associations were also observed using the same variables collected after two years' time (BMI, beta = -0.25, 95%CI:-0.41,-0.08, p = 0.004; z-score, beta = -0.10, 95%CI:-0.18,-0.03, p = 0.009; overweight/obesity OR = 0.81, 95%CI:0.66,0.99, p = 0.036). The association was age-dependent in girls (interaction between CCT haplotypes and age, p = 0.008), more evident between 7 and 9 years of age. The CCT haplotype was consistently associated with lower levels of fat mass, skinfold thickness, hip and arm circumferences both at T0 and at T1, after adjustment for multiple testing (FDR-adjusted p<0.05).

Conclusions: This study shows an association between a NMU haplotype and anthropometric indices, mainly linked to fat mass, which appears to be age- and sex-specific in children. Genetic variations within or in linkage with this haplotype should be investigated to identify functional variants responsible for the observed phenotypic variation.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. BMI (crude values and z-scores) age trend with 95% confidence intervals by haplotypes (CCT/x, red, vs carriers of the most prevalent haplotype, TTC, blue) in boys and girls.
The graphs were drawn pooling T0 (2–10 years) and T1 (4–12 years) data to have a single comprehensive view. All children contributed with their measures weighted by haplotype posterior probabilities. Each BMI value of children contributing with both T0 and T1 measures was also weighted 0.5, to take into account the effect of repeated observations in the same subject. Local regression method implies that statistical power decreases at extreme x values (larger confidence intervals).

References

    1. Martinez VG, O’Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem. 2015;61:471–482. 10.1373/clinchem.2014.231753 - DOI - PubMed
    1. Hanada R, Teranishi H, Pearson JT, Kurokawa M, Hosoda H, Fukushima N, et al. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat Med. 2004;10:1067–1073. 10.1038/nm1106 - DOI - PubMed
    1. Sato S, Hanada R, Kimura A, Abe T, Matsumoto T, Iwasaki M, et al. Central control of bone remodeling by neuromedin U. Nat Med. 2007;13:1234–1240. 10.1038/nm1640 - DOI - PubMed
    1. Niimi M, Murao K, Taminato T. Central administration of neuromedin U activates neurons in ventrobasal hypothalamus and brainstem. Endocrine. 2001;16:201–206. 10.1385/ENDO:16:3:201 - DOI - PubMed
    1. Ivanov TR, Lawrence CB, Stanley PJ, Luckman SM. Evaluation of neuromedin U actions in energy homeostasis and pituitary function. Endocrinology. 2002;143:3813–3821. 10.1210/en.2002-220121 - DOI - PubMed

Publication types

MeSH terms