Antiepileptic action of c-Jun N-terminal kinase (JNK) inhibition in an animal model of temporal lobe epilepsy
- PMID: 28237815
- PMCID: PMC5386321
- DOI: 10.1016/j.neuroscience.2017.02.024
Antiepileptic action of c-Jun N-terminal kinase (JNK) inhibition in an animal model of temporal lobe epilepsy
Abstract
Several phosphorylation signaling pathways have been implicated in the pathogenesis of epilepsy arising from both genetic causes and acquired insults to the brain. Identification of dysfunctional signaling pathways in epilepsy may provide novel targets for antiepileptic therapies. We previously described a deficit in phosphorylation signaling mediated by p38 mitogen-activated protein kinase (p38 MAPK) that occurs in an animal model of temporal lobe epilepsy, and that produces neuronal hyperexcitability measured in vitro. We asked whether in vivo pharmacological manipulation of p38 MAPK activity would influence seizure frequency in chronically epileptic animals. Administration of a p38 MAPK inhibitor, SB203580, markedly worsened spontaneous seizure frequency, consistent with prior in vitro results. However, anisomycin, a non-specific p38 MAPK activator, significantly increased seizure frequency. We hypothesized that this unexpected result was due to activation of a related MAPK, c-Jun N-terminal kinase (JNK). Administration of JNK inhibitor SP600125 significantly decreased seizure frequency in a dose-dependent manner without causing overt behavioral abnormalities. Biochemical analysis showed increased JNK expression and activity in untreated epileptic animals. These results show for the first time that JNK is hyperactivated in an animal model of epilepsy, and that phosphorylation signaling mediated by JNK may represent a novel antiepileptic target.
Keywords: antiepileptic drug; c-Jun N-terminal kinase (JNK); p38 mitogen activated kinase (p38 MAPK); phosphorylation; pilocarpine; temporal lobe epilepsy.
Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Conflict of interest statement
The authors declare no competing financial interests.
Figures







References
-
- Antoniou X, Falconi M, Di Marino D, Borsello T. JNK3 as a therapeutic target for neurodegenerative diseases. J Alzheimers Dis. 2011;24:633–642. - PubMed
-
- Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003;9:1180–1186. - PubMed
-
- Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, Wessig J, Waetzig V, Goetz M, Claussen M, Pearse D, Kuan CY, Vaudano E, Behrens A, Wagner E, Flavell RA, Davis RJ, Herdegen T. Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci. 2005;21:363–377. - PubMed
-
- Cardoso A, Carvalho LS, Lukoyanova EA, Lukoyanov NV. Effects of repeated electroconvulsive shock seizures and pilocarpine-induced status epilepticus on emotional behavior in the rat. Epilepsy Behav. 2009;14:293–299. - PubMed
-
- Chen X, Wu J, Hua D, Shu K, Wang JZ, Li L, Lei T. The c-Jun N-terminal kinase inhibitor SP600125 is neuroprotective in amygdala kindled rats. Brain Res. 2010;1357:104–114. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous