Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug;177(2):513-521.
doi: 10.1111/bjd.15410. Epub 2017 Jul 3.

Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis

Affiliations

Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis

S Eriksson et al. Br J Dermatol. 2017 Aug.

Abstract

Background: Atopic dermatitis (AD) is characterized by an increased susceptibility to skin infections. Staphylococcus aureus is reported to dominate in AD lesions and reports have revealed the presence of staphylococcal biofilms. These infections contribute to aggravation of the eczema. Sodium hypochlorite is known to reduce bacterial load of skin lesions, as well as disease severity, in patients with AD, but the effect on biofilms is unknown.

Objectives: To investigate the antimicrobial and antibiofilm effects of sodium hypochlorite against S. aureus isolates derived from patients with AD.

Methods: Skin biopsies derived from patients with infected AD were examined by scanning electron microscopy (SEM). Using radial diffusion assays, biofilm assays and confocal laser scanning microscopy, we assessed the effect of sodium hypochlorite on S. aureus isolates derived from lesional skin of patients with AD.

Results: SEM revealed clusters of coccoid bacteria embedded in fibrin and extracellular substances at the skin of a patient with infected AD. At concentrations of 0·01-0·08%, sodium hypochlorite showed antibacterial effects against planktonic cells. Eradication of S. aureus biofilms in vitro was observed in concentrations ranging from 0·01% to 0·16%. Confocal laser scanning microscopy confirmed these results. Finally, when human AD skin was subjected to sodium hypochlorite in an ex vivo model, a dose of 0·04% reduced the bacteria derived from AD skin.

Conclusions: Sodium hypochlorite has antimicrobial and antibiofilm effects against clinical S. aureus isolates. Our findings suggest usage of a higher concentration than currently used in bleach baths of patients with skin-infected AD.

PubMed Disclaimer

Comment in

Similar articles

Cited by

MeSH terms