Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr;26(4):357-367.
doi: 10.1002/pds.4158. Epub 2017 Feb 27.

A tutorial on the use of instrumental variables in pharmacoepidemiology

Affiliations
Review

A tutorial on the use of instrumental variables in pharmacoepidemiology

Ashkan Ertefaie et al. Pharmacoepidemiol Drug Saf. 2017 Apr.

Abstract

Purpose: Instrumental variable (IV) methods are used increasingly in pharmacoepidemiology to address unmeasured confounding. In this tutorial, we review the steps used in IV analyses and the underlying assumptions. We also present methods to assess the validity of those assumptions and describe sensitivity analysis to examine the effects of possible violations of those assumptions.

Methods: Observational studies based on regression or propensity score analyses rely on the untestable assumption that there are no unmeasured confounders. IV analysis is a tool that removes the bias caused by unmeasured confounding provided that key assumptions (some of which are also untestable) are met.

Results: When instruments are valid, IV methods provided unbiased treatment effect estimation in the presence of unmeasured confounders. However, the standard error of the IV estimate is higher than the standard error of non-IV estimates, e.g., regression and propensity score methods. Sensitivity analyses provided insight about the robustness of the IV results to the plausible degrees of violation of assumptions.

Conclusions: IV analysis should be used cautiously because the validity of IV estimates relies on assumptions that are, in general, untestable and difficult to be certain about. Thus, assessing the sensitivity of the estimate to violations of these assumptions is important and can better inform the causal inferences that can be drawn from the study. Copyright © 2017 John Wiley & Sons, Ltd.

Keywords: assumptions; instrumental variables; observational studies; pharmacoepidemiology; sensitivity analysis; unmeasured confounders.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources