Genome sequencing supports a multi-vertex model for Brassiceae species
- PMID: 28242534
- DOI: 10.1016/j.pbi.2017.01.006
Genome sequencing supports a multi-vertex model for Brassiceae species
Abstract
The economically important Brassica genus is a good system for studying the evolution of polyploids. Brassica genomes have undergone whole genome triplication (WGT). Subgenome dominance phenomena such as biased gene fractionation and dominant gene expression were observed in tripled genomes of Brassica. The genome of radish (Raphanus sativus), another important crop of tribe Brassiceae, was derived from the same WGT event and shows similar subgenome dominance. These findings and molecular dating indicate that radish occupies a similar evolutionary origin as that of Brassica species. Here, we extended the Brassica "triangle of U" to a multi-vertex model. This model describes the relationships or the potential of using more Brassiceae mesohexaploids in the creation of new allotetraploid oil or vegetable crop species.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Similar articles
-
Two plastid DNA lineages--Rapa/Oleracea and Nigra--within the tribe Brassiceae can be best explained by reciprocal crosses at hexaploidy: evidence from divergence times of the plastid genomes and R-block genes of the A and B genomes of Brassica juncea.PLoS One. 2014 Apr 1;9(4):e93260. doi: 10.1371/journal.pone.0093260. eCollection 2014. PLoS One. 2014. PMID: 24691069 Free PMC article.
-
Sinapis genomes provide insights into whole-genome triplication and divergence patterns within tribe Brassiceae.Plant J. 2023 Jan;113(2):246-261. doi: 10.1111/tpj.16043. Epub 2022 Dec 16. Plant J. 2023. PMID: 36424891
-
Expanding the Triangle of U: Comparative analysis of the Hirschfeldia incana genome provides insights into chromosomal evolution, phylogenomics and high photosynthesis-related traits.Ann Bot. 2024 Oct 24:mcae179. doi: 10.1093/aob/mcae179. Online ahead of print. Ann Bot. 2024. PMID: 39446469
-
Genome triplication drove the diversification of Brassica plants.Hortic Res. 2014 May 21;1:14024. doi: 10.1038/hortres.2014.24. eCollection 2014. Hortic Res. 2014. PMID: 26504539 Free PMC article. Review.
-
Gene duplication and stress genomics in Brassicas: Current understanding and future prospects.J Plant Physiol. 2020 Dec;255:153293. doi: 10.1016/j.jplph.2020.153293. Epub 2020 Oct 1. J Plant Physiol. 2020. PMID: 33181457 Review.
Cited by
-
Genome-Wide Identification of Rapid Alkalinization Factor Family in Brassica napus and Functional Analysis of BnRALF10 in Immunity to Sclerotinia sclerotiorum.Front Plant Sci. 2022 May 3;13:877404. doi: 10.3389/fpls.2022.877404. eCollection 2022. Front Plant Sci. 2022. PMID: 35592581 Free PMC article.
-
Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynthesis in Brassicaceae.Molecules. 2017 Sep 14;22(9):1549. doi: 10.3390/molecules22091549. Molecules. 2017. PMID: 28906468 Free PMC article. Review.
-
An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.).Plant Biotechnol J. 2020 Jan;18(1):274-286. doi: 10.1111/pbi.13195. Epub 2019 Jul 4. Plant Biotechnol J. 2020. PMID: 31218798 Free PMC article.
-
Mapping and identification of a new potential dominant resistance gene to turnip mosaic virus in Brassica rapa.Planta. 2022 Aug 29;256(4):66. doi: 10.1007/s00425-022-03981-5. Planta. 2022. PMID: 36036325
-
Genome-wide identification of sugar transporter gene family in Brassicaceae crops and an expression analysis in the radish.BMC Plant Biol. 2022 May 18;22(1):245. doi: 10.1186/s12870-022-03629-2. BMC Plant Biol. 2022. PMID: 35585498 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources