Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2017 Mar 15;97(4):722-731.
doi: 10.1016/j.ijrobp.2016.12.034. Epub 2016 Dec 28.

Long-Term Patient-Reported Outcomes From a Phase 3 Randomized Prospective Trial of Conventional Versus Hypofractionated Radiation Therapy for Localized Prostate Cancer

Affiliations
Clinical Trial

Long-Term Patient-Reported Outcomes From a Phase 3 Randomized Prospective Trial of Conventional Versus Hypofractionated Radiation Therapy for Localized Prostate Cancer

Talha Shaikh et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: To assess the long-term quality of life (QoL) outcomes from a phase 3 trial comparing 2 modes of intensity modulated radiation therapy (IMRT): conventional IMRT (CIMRT) versus hypofractionated IMRT (HIMRT) in patients with localized prostate cancer.

Methods and materials: Between 2002 and 2006, 303 men with low-risk to high-risk prostate cancer were randomized to 76 Gy in 38 fractions (CIMRT) versus 70.2 Gy in 26 fractions (HIMRT). QoL was compared by use of the Expanded Prostate Cancer Index Composite (EPIC), the International Prostate Symptom Score (IPSS), and EuroQoL (EQ5D) questionnaires. The primary outcome of the QoL analysis was a minimum clinically important difference defined as a 0.5 standard deviation change from baseline for each respective QoL parameter. Treatment effects were evaluated with the use of logistic mixed effects regression models.

Results: A total of 286, 299, and 218 patients had baseline EPIC, IPSS, or EQ5D data available and were included in the analysis. Overall, there was no statistically significant difference between the 2 treatment arms in terms of EPIC, IPSS, or EQ5D scores over time, although there was a trend toward lower EPIC urinary incontinence scores in the HIMRT arm. More patients in the HIMRT arm had a lower EPIC urinary incontinence score relative to baseline versus patients in the CIMRT arm with long-term follow-up. On multivariable analysis, there was no association between radiation fractionation scheme and any QoL parameter. When other clinical factors were examined, lymph node radiation was associated with worse EPIC hormonal scores versus patients receiving no lymph node radiation. In general, QoL outcomes were generally stable over time, with the exception of EPIC hormonal and EQ5D scores.

Conclusions: In this randomized prospective study, there were stable QoL changes in patients receiving HIMRT or CIMRT. Our results add to the growing body of literature suggesting that HIMRT may be an acceptable treatment modality in clinically localized prostate cancer.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: Daniel M. Geynisman – Research Funding from Pfizer, Advisory Board Participation at Prometheus, Pfizer, Novartis; Robert G. Uzzo – Honoraria from Johnson & Johnson, Consulting or Advisory Role at Myriad Genetics, Speakers’ Bureau at Janssen Oncology

Figures

Figure 1
Figure 1
CONSORT Diagram
Figure 2
Figure 2
Forest Plot Demonstrating Quality of Life Outcomes (minimum clinically important difference) According to Radiation Fractionation

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. - PubMed
    1. Kuban DA, et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70(1):67–74. - PubMed
    1. Zietman AL, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol. 2010;28(7):1106–11. - PMC - PubMed
    1. Brenner DJ, Hall EJ. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys. 1999;43(5):1095–101. - PubMed
    1. Arcangeli G, et al. A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2010;78(1):11–8. - PubMed

Publication types

MeSH terms