Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Feb 28;16(1):52.
doi: 10.1186/s12943-017-0624-9.

The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer

Affiliations
Review

The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer

Pingting Zhou et al. Mol Cancer. .

Abstract

The mechanical properties of epithelial to mesenchymal transition (EMT) and a pancreatic cancer subpopulation with stem cell properties have been increasingly recognized as potent modulators of the effective of therapy. In particular, pancreatic cancer stem cells (PCSCs) are functionally important during tumor relapse and therapy resistance. In this review we have surveyed recent advances in the role of EMT and PCSCs in tumor progression, metastasis and treatment resistance, and the mechanisms of integrated with biochemical signals and the underlying pathways involved in treatment resistance of pancreatic cancer. These findings highlight the importance of confirming stem-cells markers and complex molecular signaling pathways controlling EMT and cancer stem cells in pancreatic cancer during tumor formation, progression, and response to therapy.

Keywords: Cancer stem cell; Epithelial-to-mesenchymal transition; Pancreatic cancer; Resistance.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The Core Regulatory Machinery of EMT. Tumorigenesis activate EMT-promoting transcription factors of the TWIST, SNAIL and ZEB families through pathways known to play critical roles in both embryogenesis and tumour development, including the WNT, NOTCH, TGF-β, RAS and NF-κB cascades. MicroRNAs suppress production of these transcription factors as well as multiple markers defining the epithelial or mesenchymal characteristics. These microRNAs can therefore promote EMT (blue) or repress EMT and enhance MET programs (orange)
Fig. 2
Fig. 2
Contribution of EMT and related signaling to PCSCs. a PCSCs with tumor-initiating capability can be identified by the expression of a distinct set of marker proteins, such as CD44, CD24, CD133 or c-Met. These CSCs can self-renew and differentiate into a number of cell types to generate the heterogeneity of the originating tumor. Inducers of EMT such as TGF-β, HH or Notch cause cells to acquire a CD44+ CD24 + ESA+ phenotype, reminiscent of PCSCs. b The PCSC cell surface markers CD24, and CD44 likely promote cell–cell interactions, the c-Met respond to secreted ligands to active developmental pathways, such as β-catenin, Notch and Stat3 in PCSCs. These pathways stimulate the expression of genes that regulate stem-cell properties, such as self-renewal

Similar articles

Cited by

References

    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. doi: 10.3322/caac.20107. - DOI - PubMed
    1. Krejs GJ. Pancreatic cancer: epidemiology and risk factors. Dig Dis. 2010;28:355–358. doi: 10.1159/000319414. - DOI - PubMed
    1. Crist DW, Sitzmann JV, Cameron JL. Improved hospital morbidity, mortality, and survival after the Whipple procedure. Ann Surg. 1987;206:358–365. doi: 10.1097/00000658-198709000-00014. - DOI - PMC - PubMed
    1. Geer RJ, Brennan MF. Prognostic indicators for survival after resection of pancreatic adenocarcinoma. Am J Surg. 1993;165:68–72. doi: 10.1016/S0002-9610(05)80406-4. - DOI - PubMed
    1. Trede M, Schwall G, Saeger HD. Survival after pancreatoduodenectomy. 118 consecutive resections without an operative mortality. Ann Surg. 1990;211:447–458. doi: 10.1097/00000658-199004000-00011. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances