Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec;61(12):3795-803.
doi: 10.1128/JVI.61.12.3795-3803.1987.

In vivo and in vitro models of demyelinating disease: activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes

Affiliations

In vivo and in vitro models of demyelinating disease: activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes

S Beushausen et al. J Virol. 1987 Dec.

Abstract

The specificity of JHM virus (JHMV) tropism for rat oligodendrocytes, as one of the primary host cells in the central nervous system, is maintained after explanation (S. Beushausen and S. Dales, Virology 141:89-101, 1985). The temporal correlation between onset of resistance to JHMV infection in vivo, completion of myelination, and maturation of the central nervous system can be simulated in vitro by inducers of oligodendrocyte differentiation (Beushausen and Dales, Virology, 1985). Stimulation of differentiation through the elevation of intracellular cyclic AMP (cAMP) levels suggests a possible connection between activation of the adenylate cyclase system and coronavirus expression. Chromatographic analysis of cAMP-dependent protein kinase activity in cytosol extracts prepared from astrocytes or oligodendrocytes revealed that both glial cell types were deficient in protein kinase I, indicating that expression of coronavirus in differentiated cells was not contingent upon the presence of protein kinase I. However, treatment with N6,2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (dbcAMP) resulted in a severalfold enhancement of the free regulatory subunit (RI) in oligodendrocytes but not in astrocytes. The RII subunit in both neural cell types was relatively unaffected. Rapid increase in RI due to dbcAMP treatment was correlated with inhibition of JHMV expression. Other differentiation inducers, including 8-Br cAMP and forskolin which, by contrast, caused a decrease in detectable RI, also blocked JHMV expression. This apparent anomaly can be attributed to an increased turnover of RI due to destabilization of the molecule which occurs upon site-specific binding of the cyclic nucleotides. On the basis of these observations, we conclude that the state of oligodendrocyte differentiation manifested with the modulation of RI regulates JHMV expression. The differentiation process did not affect either virus adsorption or sequestration but appeared to inhibit the expression of viral RNA and proteins, implying that replication was inhibited at some step between penetration and initiation of genomic functions, perhaps at the stage of uncoating. We therefore examined the possibility that protein kinases and phosphatases, which influence cellular regulation during cAMP-induced differentiation, may be responsible for the phenomenon of coronavirus suppression in oligodendrocytes. Evidence was obtained indicating that normal processing of the phosphorylated nucleocapsid protein is inhibited in differentiated oligodendrocytes, consistent with the notion that JHMV replication might be arrested during uncoating.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Virology. 1985 Apr 30;142(2):378-88 - PubMed
    1. J Neurochem. 1986 Jan;46(1):300-2 - PubMed
    1. Virus Res. 1985 Oct;3(3):245-61 - PubMed
    1. Brain Res. 1986 Jan 1;362(1):23-32 - PubMed
    1. Virology. 1986 Apr 15;150(1):85-95 - PubMed

Publication types

MeSH terms

LinkOut - more resources