Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Sep 9;4(3):27.
doi: 10.3390/proteomes4030027.

Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis

Affiliations
Review

Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis

Sandra Murphy et al. Proteomes. .

Abstract

The pioneering work by Patrick H. O'Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007-4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O'Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.

Keywords: difference in-gel electrophoresis; isoelectric focusing; mass spectrometry; muscle fiber type; muscle plasticity; muscle proteomics; muscular atrophy; polyacrylamide gel electrophoresis; protein separation; skeletal muscle.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Summary of the number of publication entries with the keywords “two-dimensional gel electrophoresis” and “skeletal muscle” registered with the PubMed databank of the US National Library of Medicine ranging from 1976 to 2015.
Figure 2
Figure 2
Overview of protein classes from skeletal muscle tissue that can be separated by routine two-dimensional gel electrophoresis using isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension. Abbreviations used: ACT, actin; MBP, myosin binding protein; MLC, myosin light chain; MyHC, myosin heavy chain; TM, tropomyosin; Tn, troponin.
Figure 3
Figure 3
Overview of proteomic approaches routinely used in the profiling of skeletal muscle proteins following separation by two-dimensional gel electrophoresis. Abbreviations used: DIGE, difference in-gel electrophoresis; GE, gel electrophoresis; IEF, isoelectric focusing; NR/RED, non-reducing/reducing; PAGE, polyacrylamide gel electrophoresis.
Figure 4
Figure 4
Fluorescence two-dimensional difference in-gel electrophoretic analysis of aging skeletal muscle (Sample A: Young muscle; Sample B: Aged muscle). Abbreviations used: DIGE, difference in-gel electrophoresis; GE, gel electrophoresis; IEF, isoelectric focusing; PAGE, polyacrylamide gel electrophoresis.

Similar articles

Cited by

References

    1. Righetti P.G. Bioanalysis: Its past, present, and some future. Electrophoresis. 2004;25:2111–2127. doi: 10.1002/elps.200305808. - DOI - PubMed
    1. Rible H. Historical and theoretical aspects of isoelectric focusing. Ann. N. Y. Acad. Sci. 1973;209:11–22. - PubMed
    1. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 1969;244:4406–4412. - PubMed
    1. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. - DOI - PubMed
    1. Chrambach A., Rodbard D. Polyacrylamide gel electrophoresis. Science. 1971;172:440–451. doi: 10.1126/science.172.3982.440. - DOI - PubMed

LinkOut - more resources