Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 17;19(6):1402-1405.
doi: 10.1021/acs.orglett.7b00317. Epub 2017 Mar 1.

Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core

Affiliations

Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core

Thomas van Leeuwen et al. Org Lett. .

Abstract

Exploring routes to visible-light-driven rotary motors, the possibility of red-shifting the excitation wavelength of molecular motors by extension of the aromatic core is studied. Introducing a dibenzofluorenyl moiety in a standard molecular motor resulted in red-shifting of the absorption spectrum. UV/vis and 1H NMR spectroscopy showed that these motors could be isomerized with light of wavelengths up to 490 nm and that the structural modification did not impair the anticipated rotary behavior. Extension of the aromatic core is therefore a suitable strategy to apply in pursuit of visible-light-driven molecular motors.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Unidirectional Rotation of Motor 1
Figure 1
Figure 1
Structures and selected molecular orbitals of 1 (left) and 2 (right). Oscillator strength of selected transitions are given in parentheses (see the SI).
Figure 2
Figure 2
Energy diagram of the interconversion of the diastereoisomers of 2. Nomenclature is defined as follows: For (P,M)-2, the first stereochemical descriptor (P) denotes the helicity in the lower half, while the second descriptor (M) denotes the helicity in the upper half. The optimized structures of the transition states are depicted in Figure S10.
Scheme 2
Scheme 2. Synthesis of Molecular Motor 2
Figure 3
Figure 3
Changes in the UV/vis absorption spectrum of a solution of 2 in CH2Cl2 upon irradiation with λmax = 420 nm.

Similar articles

Cited by

References

    1. Molecular Switches; Browne W. R., Feringa B. L., Eds.; Wiley-VCH: Weinheim, 2011.
    2. From Non-Covalent Assemblies to Molecular Machines; Sauvage J. P., Gaspard P., Eds; Wiley-VCH: Weinheim, 2010.
    3. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld; Balzani V., Credi A., Venturi M., Eds.; Wiley-VCH: Weinheim, 2008.
    4. Cheng C.; Stoddart J. F. ChemPhysChem 2016, 17, 1780.10.1002/cphc.201501155. - DOI - PubMed
    5. Erbas-Cakmak S.; Leigh D. A.; McTernan C. T.; Nussbaumer A. L. Chem. Rev. 2015, 115, 10081.10.1021/acs.chemrev.5b00146. - DOI - PMC - PubMed
    6. Coskun A.; Banaszak M.; Astumian R. D.; Stoddart J. F.; Grzybowski B. A. Chem. Soc. Rev. 2012, 41, 19.10.1039/C1CS15262A. - DOI - PubMed
    7. Kinbara K.; Aida T. Chem. Rev. 2005, 105, 1377.10.1021/cr030071r. - DOI - PubMed
    1. Kundu P. K.; Klajn R. ACS Nano 2014, 8, 11913.10.1021/nn506656r. - DOI - PubMed
    2. Spruell J. M.; Hawker C. J. Chem. Sci. 2011, 2, 18.10.1039/C0SC00426J. - DOI
    3. Qu D. H.; Wang Q. C.; Zhang Q. W.; Ma X.; Tian H. Chem. Rev. 2015, 115, 7543.10.1021/cr5006342. - DOI - PubMed
    4. Klajn R. Chem. Soc. Rev. 2014, 43, 148.10.1039/C3CS60181A. - DOI - PubMed
    5. Zhang J.; Zou Q.; Tian H. Adv. Mater. 2013, 25, 378.10.1002/adma.201201521. - DOI - PubMed
    6. Russew M. M.; Hecht S. Adv. Mater. 2010, 22, 3348.10.1002/adma.200904102. - DOI - PubMed
    1. Broichhagen J.; Frank J. A.; Trauner D. Acc. Chem. Res. 2015, 48, 1947.10.1021/acs.accounts.5b00129. - DOI - PubMed
    2. Dong M.; Babalhavaeji A.; Samanta S.; Beharry A. A.; Woolley G. A. Acc. Chem. Res. 2015, 48, 2662.10.1021/acs.accounts.5b00270. - DOI - PubMed
    3. Lerch M. M.; Hansen M. J.; van Dam G. M.; Szymanski W.; Feringa B. L. Angew. Chem., Int. Ed. 2016, 55, 10978.10.1002/anie.201601931. - DOI - PubMed
    4. Velema W. A.; Szymanski W.; Feringa B. L. J. Am. Chem. Soc. 2014, 136, 2178.10.1021/ja413063e. - DOI - PubMed
    1. Bléger D.; Hecht S. Angew. Chem., Int. Ed. 2015, 54, 11338.10.1002/anie.201500628. - DOI - PubMed
    1. Beharry A. A.; Sadovski O.; Woolley G. A. J. Am. Chem. Soc. 2011, 133, 19684.10.1021/ja209239m. - DOI - PubMed
    2. Bléger D.; Schwarz J.; Brouwer A. M.; Hecht S. J. Am. Chem. Soc. 2012, 134, 20597.10.1021/ja310323y. - DOI - PubMed
    3. Konrad D. B.; Frank J. A.; Trauner D. Chem. - Eur. J. 2016, 22, 4364.10.1002/chem.201505061. - DOI - PubMed
    4. Samanta S.; McCormick T. M.; Schmidt S. K.; Seferos D. S.; Woolley G. A. Chem. Commun. 2013, 49, 10314.10.1039/c3cc46045b. - DOI - PubMed
    5. Hansen M. J.; Lerch M. M.; Szymanski W.; Feringa B. L. Angew. Chem., Int. Ed. 2016, 55, 13514.10.1002/anie.201607529. - DOI - PubMed

Publication types

LinkOut - more resources