Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core
- PMID: 28248510
- PMCID: PMC5359586
- DOI: 10.1021/acs.orglett.7b00317
Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core
Abstract
Exploring routes to visible-light-driven rotary motors, the possibility of red-shifting the excitation wavelength of molecular motors by extension of the aromatic core is studied. Introducing a dibenzofluorenyl moiety in a standard molecular motor resulted in red-shifting of the absorption spectrum. UV/vis and 1H NMR spectroscopy showed that these motors could be isomerized with light of wavelengths up to 490 nm and that the structural modification did not impair the anticipated rotary behavior. Extension of the aromatic core is therefore a suitable strategy to apply in pursuit of visible-light-driven molecular motors.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Molecular Switches; Browne W. R., Feringa B. L., Eds.; Wiley-VCH: Weinheim, 2011.
- From Non-Covalent Assemblies to Molecular Machines; Sauvage J. P., Gaspard P., Eds; Wiley-VCH: Weinheim, 2010.
- Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld; Balzani V., Credi A., Venturi M., Eds.; Wiley-VCH: Weinheim, 2008.
- Cheng C.; Stoddart J. F. ChemPhysChem 2016, 17, 1780.10.1002/cphc.201501155. - DOI - PubMed
- Erbas-Cakmak S.; Leigh D. A.; McTernan C. T.; Nussbaumer A. L. Chem. Rev. 2015, 115, 10081.10.1021/acs.chemrev.5b00146. - DOI - PMC - PubMed
- Coskun A.; Banaszak M.; Astumian R. D.; Stoddart J. F.; Grzybowski B. A. Chem. Soc. Rev. 2012, 41, 19.10.1039/C1CS15262A. - DOI - PubMed
- Kinbara K.; Aida T. Chem. Rev. 2005, 105, 1377.10.1021/cr030071r. - DOI - PubMed
-
- Kundu P. K.; Klajn R. ACS Nano 2014, 8, 11913.10.1021/nn506656r. - DOI - PubMed
- Spruell J. M.; Hawker C. J. Chem. Sci. 2011, 2, 18.10.1039/C0SC00426J. - DOI
- Qu D. H.; Wang Q. C.; Zhang Q. W.; Ma X.; Tian H. Chem. Rev. 2015, 115, 7543.10.1021/cr5006342. - DOI - PubMed
- Klajn R. Chem. Soc. Rev. 2014, 43, 148.10.1039/C3CS60181A. - DOI - PubMed
- Zhang J.; Zou Q.; Tian H. Adv. Mater. 2013, 25, 378.10.1002/adma.201201521. - DOI - PubMed
- Russew M. M.; Hecht S. Adv. Mater. 2010, 22, 3348.10.1002/adma.200904102. - DOI - PubMed
-
- Broichhagen J.; Frank J. A.; Trauner D. Acc. Chem. Res. 2015, 48, 1947.10.1021/acs.accounts.5b00129. - DOI - PubMed
- Dong M.; Babalhavaeji A.; Samanta S.; Beharry A. A.; Woolley G. A. Acc. Chem. Res. 2015, 48, 2662.10.1021/acs.accounts.5b00270. - DOI - PubMed
- Lerch M. M.; Hansen M. J.; van Dam G. M.; Szymanski W.; Feringa B. L. Angew. Chem., Int. Ed. 2016, 55, 10978.10.1002/anie.201601931. - DOI - PubMed
- Velema W. A.; Szymanski W.; Feringa B. L. J. Am. Chem. Soc. 2014, 136, 2178.10.1021/ja413063e. - DOI - PubMed
-
- Beharry A. A.; Sadovski O.; Woolley G. A. J. Am. Chem. Soc. 2011, 133, 19684.10.1021/ja209239m. - DOI - PubMed
- Bléger D.; Schwarz J.; Brouwer A. M.; Hecht S. J. Am. Chem. Soc. 2012, 134, 20597.10.1021/ja310323y. - DOI - PubMed
- Konrad D. B.; Frank J. A.; Trauner D. Chem. - Eur. J. 2016, 22, 4364.10.1002/chem.201505061. - DOI - PubMed
- Samanta S.; McCormick T. M.; Schmidt S. K.; Seferos D. S.; Woolley G. A. Chem. Commun. 2013, 49, 10314.10.1039/c3cc46045b. - DOI - PubMed
- Hansen M. J.; Lerch M. M.; Szymanski W.; Feringa B. L. Angew. Chem., Int. Ed. 2016, 55, 13514.10.1002/anie.201607529. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
