Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 2;12(3):e0173078.
doi: 10.1371/journal.pone.0173078. eCollection 2017.

Urinary metabolomics reveals glycemic and coffee associated signatures of thyroid function in two population-based cohorts

Affiliations

Urinary metabolomics reveals glycemic and coffee associated signatures of thyroid function in two population-based cohorts

Nele Friedrich et al. PLoS One. .

Abstract

Background: Triiodothyronine (T3) and thyroxine (T4) as the main secretion products of the thyroid affect nearly every human tissue and are involved in a broad range of processes ranging from energy expenditure and lipid metabolism to glucose homeostasis. Metabolomics studies outside the focus of clinical manifest thyroid diseases are rare. The aim of the present investigation was to analyze the cross-sectional and longitudinal associations of urinary metabolites with serum free T4 (FT4) and thyroid-stimulating hormone (TSH).

Methods: Urine Metabolites of participants of the population-based studies Inter99 (n = 5620) and Health2006/Health2008 (n = 3788) were analyzed by 1H-NMR spectroscopy. Linear or mixed linear models were used to detect associations between urine metabolites and thyroid function.

Results: Cross-sectional analyses revealed positive relations of alanine, trigonelline and lactic acid with FT4 and negative relations of dimethylamine, glucose, glycine and lactic acid with log(TSH). In longitudinal analyses, lower levels of alanine, dimethylamine, glycine, lactic acid and N,N-dimethylglycine were linked to a higher decline in FT4 levels over time, whereas higher trigonelline levels were related to a higher FT4 decline. Moreover, the risk of hypothyroidism was higher in subjects with high baseline trigonelline or low lactic acid, alanine or glycine values.

Conclusion: The detected associations mainly emphasize the important role of thyroid hormones in glucose homeostasis. In addition, the predictive character of these metabolites might argue for a potential feedback of the metabolic state on thyroid function. Besides known metabolic consequences of TH, the link to the urine excretion of trigonelline, a marker of coffee consumption, represents a novel finding of this study and given the ubiquitous consumption of coffee requires further research.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors declare that no conflicts of interest exist. The support of Bruker BioSpin in metabolite quantification does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1
Fig 1. Study design.
A) Flow diagram of analyses strategies. B) Graphical chart of cross-sectional and longitudinal analyses.
Fig 2
Fig 2. Cross-sectional association between urine metabolome and thyroid function.
A) Corrected p-values (false discovery rate (FDR)) of the cross-sectional associations of metabolites levels (right side) or ppm (left side) with free thyroxine (FT4) or thyrotropin (TSH) in Inter99 and Health2006/08. Multivariable linear regression models were adjusted for age, sex, body-mass-index, HbA1c, low-density lipoprotein cholesterol and systolic blood pressure. B) Median levels of alanine, lactate, N,N-dimethylglycine or trigonelline by tertiles of FT4 in Inter99 and Health2006/08. C): Median levels of glycine, lactate, dimethylamine or glucose by tertiles of log(TSH) in Inter99 and Health2006/08.
Fig 3
Fig 3. Longitudinal association between urine metabolome and thyroid function.
A) Corrected p-values (false discovery rate (FDR)) of the longitudinal associations of urine metabolites levels (right side) or ppm (left side) with changes in free thyroxine (FT4) or thyrotropin (TSH) in Inter99. Models were performed in all subjects (x-axis) and *only in subjects with noticeable change assessed by the reference change value (RCV). Multivariable mixed linear models were adjusted for age, sex, body-mass-index, HbA1c, low-density lipoprotein cholesterol and systolic blood pressure (for more details see method section). Estimated mean value with 95% confidence limits for changes in free thyroxine (B: ΔFT4) or thyrotropin (C: Δlog(TSH)) by quartiles of selected urinary metabolite concentrations in Inter99 calculated by mixed linear models. DMA = dimethylamine. DMG = dimethylglycine.

Similar articles

Cited by

References

    1. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82. 10.1152/physrev.00030.2013 - DOI - PMC - PubMed
    1. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81(3):1097–142. - PubMed
    1. Thienpont LM, Van Uytfanghe K, Beastall G, Faix JD, Ieiri T, Miller WG, et al. Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 1: thyroid-stimulating hormone. Clin Chem. 2010;56(6):902–11. 10.1373/clinchem.2009.140178 - DOI - PubMed
    1. Thienpont LM, Van Uytfanghe K, Beastall G, Faix JD, Ieiri T, Miller WG, et al. Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 2: free thyroxine and free triiodothyronine. Clin Chem. 2010;56(6):912–20. 10.1373/clinchem.2009.140194 - DOI - PubMed
    1. Wojakowska A, Chekan M, Widlak P, Pietrowska M. Application of metabolomics in thyroid cancer research. Int J Endocrinol. 2015;2015:258763 10.1155/2015/258763 - DOI - PMC - PubMed