Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May;29(18).
doi: 10.1002/adma.201606370. Epub 2017 Mar 3.

The Light-Induced Field-Effect Solar Cell Concept - Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency

Affiliations

The Light-Induced Field-Effect Solar Cell Concept - Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency

Yusheng Wang et al. Adv Mater. 2017 May.

Abstract

Solar cell generates electrical energy from light one via pulling excited carrier away under built-in asymmetry. Doped semiconductor with antireflection layer is general strategy to achieve this including crystalline silicon (c-Si) solar cell. However, loss of extra energy beyond band gap and light reflection in particular wavelength range is known to hinder the efficiency of c-Si cell. Here, it is found that part of short wavelength sunlight can be converted into polarization electrical field, which strengthens asymmetry in organic-c-Si heterojunction solar cell through molecule alignment process. The light harvested by organometal trihalide perovskite nanoparticles (NPs) induces molecular alignment on a conducting polymer, which generates positive electrical surface field. Furthermore, a "field-effect solar cell" is successfully developed and implemented by combining perovskite NPs with organic/c-Si heterojunction associating with light-induced molecule alignment, which achieves an efficiency of 14.3%. In comparison, the device with the analogous structure without perovskite NPs only exhibits an efficiency of 12.7%. This finding provides a novel concept to design solar cell by sacrificing part of sunlight to provide "extra" asymmetrical field continuously as to drive photogenerated carrier toward respective contacts under direct sunlight. Moreover, it also points out a method to combine promising perovskite material with c-Si solar cell.

Keywords: field effect; light-induced; perovskite nanoparticles; polarization; solar cells.

PubMed Disclaimer

LinkOut - more resources