Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Nov 13;148(3):1432-9.
doi: 10.1016/s0006-291x(87)80292-9.

Specific opioid binding sites for dermorphin in rat brain. A radioreceptor assay using the tritiated hormone as primary ligand

Affiliations

Specific opioid binding sites for dermorphin in rat brain. A radioreceptor assay using the tritiated hormone as primary ligand

M Amiche et al. Biochem Biophys Res Commun. .

Abstract

Dermorphin, a heptapeptide amide isolated from amphibian skin, is the most potent of the naturally occurring opioid peptides. (3H)-dermorphin (52 Ci/mmol, 1294 GBq/mmol) was prepared by catalytic tritiation of the synthetic (2,5-iodotyrosyl 1,5)-dermorphin precursor. High affinity specific binding sites for dermorphin were labeled in rat brain membranes using tritiated dermorphin as primary ligand. The binding was saturable and time-dependent. Scatchard analysis revealed a single population of non-interacting high affinity sites (Kd = 0.86 nM). Dermorphin and the specific opiate antagonist naloxone inhibited specific (3H)-dermorphin binding in a concentration dependent manner. The displacement curves could be fit to a simple competitive model assuming only one population of binding sites, with IC 50 of 1.6 nM and 3.4 nM for dermorphin and naloxone, respectively. The use of tritiated dermorphin will be helpful to ascertain unequivocally the selectivity of dermorphin for the different opioid receptor subtypes in the central nervous system.

PubMed Disclaimer

Publication types

LinkOut - more resources