Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan 12;964(1):28-35.
doi: 10.1016/0304-4165(88)90063-3.

Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy

Affiliations

Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy

M J Davies. Biochim Biophys Acta. .

Abstract

ESR spin trapping using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to directly detect alkoxyl radicals (with hyperfine coupling constants aN 1.488, aH 1.600 mT and aN 1.488, aH 1.504 mT for the tBuO. and PhC(CH3)2O. adducts, respectively) and peroxyl radicals (aN 1.448, aH 1.088, aH 0.130 mT and aN 1.456, aH 1.064, aH 0.128 mT for the tBuOO. and PhC(CH3)2OO. adducts, respectively) produced from t-butyl or cumene hydroperoxides by a variety of heme-containing substances (purified cytochrome P-450, metmyoglobin, oxyhemoglobin, methemoglobin, cytochrome c, catalase, horseradish peroxidase) and the model compound hematin. The observed species exhibit a complicated dependence on reagent concentrations and time, with maximum concentrations of the peroxyl radical adducts being observed immediately after mixing of the hydroperoxide with low concentrations of the heme-compound. Experiments with inhibitors (CN-, N3-, CO, metyrapone and imidazole) suggest that the major mechanism of peroxyl radical production involves high-valence-state iron complexes in a reaction analogous to the classical peroxidase pathway. The production of alkoxyl radicals is shown to arise mainly from the breakdown of peroxyl radical spin adducts, with direct production from the hydroperoxide being a relatively minor process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources