LAG3 (CD223) as a cancer immunotherapy target
- PMID: 28258692
- PMCID: PMC5338468
- DOI: 10.1111/imr.12519
LAG3 (CD223) as a cancer immunotherapy target
Abstract
Despite the impressive impact of CTLA4 and PD1-PDL1-targeted cancer immunotherapy, a large proportion of patients with many tumor types fail to respond. Consequently, the focus has shifted to targeting alternative inhibitory receptors (IRs) and suppressive mechanisms within the tumor microenvironment. Lymphocyte activation gene-3 (LAG3) (CD223) is the third IR to be targeted in the clinic, consequently garnering considerable interest and scrutiny. LAG3 upregulation is required to control overt activation and prevent the onset of autoimmunity. However, persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression, contributing to a state of exhaustion manifest in impaired proliferation and cytokine production. The exact signaling mechanisms downstream of LAG3 and interplay with other IRs remain largely unknown. However, the striking synergy between LAG3 and PD1 observed in multiple settings, coupled with the contrasting intracellular cytoplasmic domain of LAG3 as compared with other IRs, highlights the potential uniqueness of LAG3. There are now four LAG3-targeted therapies in the clinic with many more in preclinical development, emphasizing the broad interest in this IR. Given the translational relevance of LAG3 and the heightened interest in the impact of dual LAG3/PD1 targeting in the clinic, the outcome of these trials could serve as a nexus; significantly increasing or dampening enthusiasm for subsequent targets in the cancer immunotherapeutic pipeline.
Keywords: CD223; LAG3; cancer immunotherapy; immune regulation; inhibitory receptors; monoclonal antibodies; regulatory T cells.
© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Figures



References
-
- Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection. Cell. 2009;138:30–50. - PubMed
-
- Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature medicine. 2004;10:942–949. - PubMed
-
- Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. International journal of cancer. 2010;127:759–767. - PubMed
-
- Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342:1432–1433. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials