Correlation of Chitinase 3-Like 1 Single Nucleotide Polymorphisms with Hepatocellular Carcinoma in Taiwan
- PMID: 28260989
- PMCID: PMC5332842
- DOI: 10.7150/ijms.17754
Correlation of Chitinase 3-Like 1 Single Nucleotide Polymorphisms with Hepatocellular Carcinoma in Taiwan
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Taiwan. Multiple risk factors, such as chronic hepatitis B or C virus infection, carcinogen exposure, cirrhosis, and various single-nucleotide polymorphisms (SNPs), are considered to contribute to hepatocarcinogenesis. Chitinase-3-like protein 1 (CHI3L1), a biomarker implicated in inflammation and tissue remodeling, plays a promoting role in angiogenesis, antiapoptosis, and cell proliferation. This study investigated the role of CHI3L1 SNPs in HCC susceptibility and clinicopathology. Real-time polymerase chain reaction was used to analyze four SNPs of CHI3L1 in 343 patients with HCC and 686 cancer-free controls. We found associations with HCC susceptibility in CHI3L1 rs880633 polymorphism carriers with genotypes (TC+CC). We observed that HCC patients had lower frequencies of CHI3L1 rs6691378 polymorphisms with the variant genotype GA+AA than the wild-type carriers with distant metastasis and positive HBsAg did. In 200 HBsAg negative HCC patients, we observed that the CHI3L1 rs4950928 polymorphisms carriers with the variant genotype CG+GG had higher frequencies of vascular invasion. Finally, carriers of CHI3L1 rs6691378 and 10399805 polymorphisms with the variant genotypes GA+AA showed lower levels of alpha-fetoprotein in HCC laboratory status. In conclusion, our results indicate that patients with CHI3L1 rs880633 variant genotypes TC+CC are at a higher risk of HCC. CHI3L1 polymorphisms rs880633 or rs4950928 may be potential candidates for predicting poor HCC prognosis and clinical status.
Keywords: CHI3L1; Hepatocellular carcinoma; Single nucleotide polymorphism.
Conflict of interest statement
Competing Interests: The authors have declared that no competing interests exist.
References
-
- El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–1127. - PubMed
-
- Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108. - PubMed
-
- Weng CJ, Hsieh YH, Tsai CM, Chu YH, Ueng KC, Liu YF, Yeh YH, Su SC, Chen YC, Chen MK, Yang SF. Relationship of insulin-like growth factors system gene polymorphisms with the susceptibility and pathological development of hepatocellular carcinoma. Ann Surg Oncol. 2010;17:1808–1815. - PubMed
-
- Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L, Pignon JP, Tursz T, Le Chevalier T, Soria JC, Investigators IB. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med. 2006;355:983–991. - PubMed
-
- Johansen JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull. 2006;53:172–209. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
