Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec 30;170(1-2):77-85.
doi: 10.1111/j.1432-1033.1987.tb13669.x.

Omega-oxidation of cysteine-containing leukotrienes by rat-liver microsomes. Isolation and characterization of omega-hydroxy and omega-carboxy metabolites of leukotriene E4 and N-acetylleukotriene E4

Affiliations
Free article

Omega-oxidation of cysteine-containing leukotrienes by rat-liver microsomes. Isolation and characterization of omega-hydroxy and omega-carboxy metabolites of leukotriene E4 and N-acetylleukotriene E4

L Orning. Eur J Biochem. .
Free article

Abstract

Leukotriene E4 was metabolized to two polar products by rat liver microsomes. These products were characterized by physico-chemical and chemical techniques. The chemical structures, (5S, 6R)-5,20-dihydroxy-6S-cysteinyl-7,9-trans-11,14-cis-icosatetraenoic acid (omega-hydroxy-leukotriene E4) and (5S, 6R)-5-hydroxy-6S-cysteinyl-7,9-trans-11,14-cis-icosatetraen-1,20-d ioic acid (omega-carboxy-leukotriene E4) suggested that leukotriene E4 was transformed by an omega-hydroxylase and omega-hydroxyleukotriene E dehydrogenase in sequence. N-Acetyl-leukotriene E4 was also transformed by these enzymes, but at a rate six times lower than leukotriene E4. The products formed from N-acetylleukotriene E4 were characterized as being N-acetyl-omega-hydroxy-leukotriene E4 and N-acetyl-omega-carboxy-leukotriene E4. Other substrates were 11-trans-leukotriene E4 and N-acetyl-11-trans-leukotriene E4. In contrast, leukotrienes C4 and D4 were not converted into omega-oxidized metabolites. The leukotriene E omega-hydroxylase reaction required NADPH and molecular oxygen as cofactors, and was most rapidly catalyzed by liver microsomes. Liver cytosol, fortified with NAD+, converted omega-hydroxyleukotriene E4 and N-acetyl-omega-hydroxy-leukotriene E4 into omega-carboxy metabolites. Microsomes contained at least 18 times less omega-hydroxy-leukotriene E dehydrogenase activity than did cytosol. Liver microsomes supplemented with acetyl-coenzyme A converted omega-hydroxy and omega-carboxy-leukotriene E4 into the corresponding N-acetyl derivatives. The novel enzyme, leukotriene E omega-hydroxylase, which is described here is distinct from a previously described leukotriene B omega-hydroxylase based on substrate competition and kinetic data.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources