Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1987 Dec;173(2):486-95.
doi: 10.1016/0014-4827(87)90288-6.

Transformation by the oncogene v-fms: the effects of castanospermine on transformation-related parameters

Affiliations
Comparative Study

Transformation by the oncogene v-fms: the effects of castanospermine on transformation-related parameters

E J Nichols et al. Exp Cell Res. 1987 Dec.

Abstract

The effects of castanospermine on various parameters associated with transformation were examined in cells expressing the viral oncogene v-fms. Fischer rat embryo (FRE) cells transformed by the oncogene v-fms and grown in the presence of castanospermine reverted to a more normal cell morphology and accumulated fms protein within the endoplasmic reticulum. Treated cells attained contact inhibition of cell growth at a much lower cell density compared to the untreated controls. No effect of castanospermine on cell growth was observed for FRE cells transformed by a different oncogene v-fgr. Castanospermine-treated SM-FRE (v-fms transformed) cells reexpressed extracellular matrix fibronectin and exhibited an extensive actin-containing cytoskeleton similar to that of normal nontransformed FRE cells. Castanospermine treatment of SM-FRE cells resulted in a sixfold decrease in [3H]deoxyglucose uptake compared to that of the nonreverted SM-FRE cells. Again, no effect was observed in FRE cells transformed by the oncogene v-fgr (GR-FRE). These results further characterize the reversion caused by castanospermine and indicate that cell surface expression coordinately controls anchorage independent growth, cell morphology, contact inhibition of growth, and hexose uptake.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources