Passive H+/OH- permeability in epithelial brush border membranes
- PMID: 2826411
- DOI: 10.1007/BF00770031
Passive H+/OH- permeability in epithelial brush border membranes
Abstract
Passive H+/OH- permeability across epithelial cell membranes is rapid and leads to partial dissipation of H+/OH- gradients produced by H+ pumps and ion gradient-coupled H+/OH- transporters. A heterogeneous set of H+/OH- transport mechanisms exist in biological membranes: lipid solubility/diffusion, protein-mediated transport by specific proteins or by slippage through ion-coupled H+/OH- transporters, and transport at the protein/lipid interface or through protein-dependent defects in the lipid structure. A variety of methods are available to study protein transport mechanisms accurately in cells and biomembrane vesicles including pH electrode recordings, pH-sensitive fluorescent and magnetic resonance probes, and potentiometric probes. In brush border vesicles from the renal proximal tubule, the characteristics of passive H+/OH- permeability are quite similar to those reported for passive H+/OH- permeability through pure lipid bilayers; slippage of protons through the brush border Na+/H+ antiporter or through brush border water channels is minimal. In contrast, passive H+/OH- permeability in brush border vesicles from human placenta is mediated in part by a stilbene-sensitive membrane protein. To demonstrate the physiological significance of passive renal brush border H+/OH- transport, proximal tubule acidification and cell pH regulation mechanisms are modeled mathematically for states of normal and altered H+/OH- permeabilities.
Similar articles
-
Proton/hydroxyl permeability of proximal tubule brush border vesicles.Am J Physiol. 1985 Jan;248(1 Pt 2):F78-86. doi: 10.1152/ajprenal.1985.248.1.F78. Am J Physiol. 1985. PMID: 2982277
-
Mechanism of coupling between Cl- and OH- transport in renal brush-border membranes.Biochim Biophys Acta. 1986 Dec 1;863(1):91-100. doi: 10.1016/0005-2736(86)90390-1. Biochim Biophys Acta. 1986. PMID: 3778914
-
Proton pathways in rat renal brush-border and basolateral membranes.Biochim Biophys Acta. 1983 Oct 12;734(2):210-20. doi: 10.1016/0005-2736(83)90119-0. Biochim Biophys Acta. 1983. PMID: 6311264
-
Urate transport in the proximal tubule: in vivo and vesicle studies.Am J Physiol. 1985 Dec;249(6 Pt 2):F789-98. doi: 10.1152/ajprenal.1985.249.6.F789. Am J Physiol. 1985. PMID: 3000189 Review.
-
Electrophysiology of plasma membrane vesicles.Am J Physiol. 1984 Apr;246(4 Pt 2):F363-72. doi: 10.1152/ajprenal.1984.246.4.F363. Am J Physiol. 1984. PMID: 6372509 Review.
Cited by
-
Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28.J Cell Biol. 1993 Jan;120(2):359-69. doi: 10.1083/jcb.120.2.359. J Cell Biol. 1993. PMID: 8421053 Free PMC article.
-
Water, proton, and urea transport in toad bladder endosomes that contain the vasopressin-sensitive water channel.J Gen Physiol. 1990 May;95(5):941-60. doi: 10.1085/jgp.95.5.941. J Gen Physiol. 1990. PMID: 2163434 Free PMC article.
-
Endocytic vesicles from renal papilla which retrieve the vasopressin-sensitive water channel do not contain a functional H+ ATPase.J Cell Biol. 1990 Aug;111(2):379-89. doi: 10.1083/jcb.111.2.379. J Cell Biol. 1990. PMID: 1696262 Free PMC article.
-
Proton flux mechanisms in model and biological membranes.J Membr Biol. 1989 Feb;107(2):91-103. doi: 10.1007/BF01871715. J Membr Biol. 1989. PMID: 2469801 Review. No abstract available.
-
Proton conductance caused by long-chain fatty acids in phospholipid bilayer membranes.J Membr Biol. 1988 Nov;106(1):83-93. doi: 10.1007/BF01871769. J Membr Biol. 1988. PMID: 2852256