Molecular basis of ancestral vertebrate electroreception
- PMID: 28264196
- PMCID: PMC5354974
- DOI: 10.1038/nature21401
Molecular basis of ancestral vertebrate electroreception
Abstract
Elasmobranch fishes, including sharks, rays, and skates, use specialized electrosensory organs called ampullae of Lorenzini to detect extremely small changes in environmental electric fields. Electrosensory cells within these ampullae can discriminate and respond to minute changes in environmental voltage gradients through an unknown mechanism. Here we show that the voltage-gated calcium channel CaV1.3 and the big conductance calcium-activated potassium (BK) channel are preferentially expressed by electrosensory cells in little skate (Leucoraja erinacea) and functionally couple to mediate electrosensory cell membrane voltage oscillations, which are important for the detection of specific, weak electrical signals. Both channels exhibit unique properties compared with their mammalian orthologues that support electrosensory functions: structural adaptations in CaV1.3 mediate a low-voltage threshold for activation, and alterations in BK support specifically tuned voltage oscillations. These findings reveal a molecular basis of electroreception and demonstrate how discrete evolutionary changes in ion channel structure facilitate sensory adaptation.
Figures
















Comment in
-
Sensory Systems: Electrifying News from the Ocean.Curr Biol. 2017 Dec 18;27(24):R1327-R1329. doi: 10.1016/j.cub.2017.11.015. Curr Biol. 2017. PMID: 29257970
Similar articles
-
Molecular tuning of electroreception in sharks and skates.Nature. 2018 Jun;558(7708):122-126. doi: 10.1038/s41586-018-0160-9. Epub 2018 May 30. Nature. 2018. PMID: 29849147 Free PMC article.
-
Calcium-Activated Big-Conductance (BK) Potassium Channels Traffic through Nuclear Envelopes into Kinocilia in Ray Electrosensory Cells.Cells. 2023 Aug 22;12(17):2125. doi: 10.3390/cells12172125. Cells. 2023. PMID: 37681857 Free PMC article.
-
Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing.Gene. 2016 Mar 1;578(1):63-73. doi: 10.1016/j.gene.2015.12.010. Epub 2015 Dec 11. Gene. 2016. PMID: 26687710 Free PMC article.
-
Biophysics of BK Channel Gating.Int Rev Neurobiol. 2016;128:1-49. doi: 10.1016/bs.irn.2016.03.013. Epub 2016 Apr 16. Int Rev Neurobiol. 2016. PMID: 27238260 Review.
-
CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis?Channels (Austin). 2010 Nov-Dec;4(6):440-6. doi: 10.4161/chan.4.6.12866. Epub 2010 Nov 1. Channels (Austin). 2010. PMID: 21084859 Review.
Cited by
-
Large conductance voltage-and calcium-activated K+ (BK) channel in health and disease.Front Pharmacol. 2024 Mar 22;15:1373507. doi: 10.3389/fphar.2024.1373507. eCollection 2024. Front Pharmacol. 2024. PMID: 38584598 Free PMC article. Review.
-
A revised conceptual framework for mouse vomeronasal pumping and stimulus sampling.Curr Biol. 2024 Mar 25;34(6):1206-1221.e6. doi: 10.1016/j.cub.2024.01.036. Epub 2024 Feb 5. Curr Biol. 2024. PMID: 38320553 Free PMC article.
-
The Sensory Shark: High-quality Morphological, Genomic and Transcriptomic Data for the Small-spotted Catshark Scyliorhinus Canicula Reveal the Molecular Bases of Sensory Organ Evolution in Jawed Vertebrates.Mol Biol Evol. 2024 Dec 6;41(12):msae246. doi: 10.1093/molbev/msae246. Mol Biol Evol. 2024. PMID: 39657112 Free PMC article.
-
Molecular tuning of electroreception in sharks and skates.Nature. 2018 Jun;558(7708):122-126. doi: 10.1038/s41586-018-0160-9. Epub 2018 May 30. Nature. 2018. PMID: 29849147 Free PMC article.
-
Large-Scale Convergence of Receptor Cell Arrays Onto Afferent Terminal Arbors in the Lorenzinian Electroreceptors of Polyodon.Front Neuroanat. 2020 Oct 19;14:50. doi: 10.3389/fnana.2020.00050. eCollection 2020. Front Neuroanat. 2020. PMID: 33192338 Free PMC article.
References
-
- Kalmijn AJ. The electric sense of sharks and rays. The Journal of Experimental Biology. 1971;55:371–383. - PubMed
-
- Kalmijn AJ. Electric and magnetic field detection in elasmobranch fishes. Science. 1982;218:916–918. - PubMed
-
- Lissmann HW, Machin KE. The mechanism of object location in Gymnarchus niloticus and similar fish. Journal of Experimental Biology. 1958;35:451–486.
-
- Munz H, Claas B, Fritzsch B. Electroreceptive and mechanoreceptive units in the lateral line of the axolotl Ambystoma mexicanum. J Comp Physiol. 1984;154:33–44.
-
- Scheich H, Langner G, Tidemann C, Coles RB, Guppy A. Electroreception and electrolocation in platypus. Nature. 1986;319:401–402. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials