Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan 15;263(2):776-81.

Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses

Affiliations
  • PMID: 2826460
Free article

Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses

M A Hass et al. J Biol Chem. .
Free article

Abstract

Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), by in vitro heat shock (41 degrees C), and during incubation of lung slices with the Cu chelator diethyldithiocarbamate, which decreased the activity of Cu,Zn superoxide dismutase. The heat shock-induced increase in Cu,Zn superoxide dismutase developed 2 h later than the induction of heat shock proteins and was not blocked by actinomycin D. The rates of synthesis of both superoxide dismutases were decreased 50% by hypoxia and failed to increase during reoxygenation. During hypoxia the activity of Cu,Zn superoxide dismutase decreased about 50%, but the activity of Mn superoxide dismutase remained unchanged. We conclude that hyperthermia increases the synthesis of Cu,Zn superoxide dismutase, the synthesis of Cu,Zn superoxide dismutase and Mn superoxide dismutase are not coordinately regulated by hyperthermia or by the oxidant stress produced by lowering the activity of Cu,Zn superoxide dismutase, and the synthesis of heat shock proteins and Cu,Zn superoxide dismutase are regulated at different levels of gene expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources