Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan 25;263(3):1494-9.

The purification and properties of deoxyguanosine triphosphate triphosphohydrolase from Escherichia coli

Affiliations
  • PMID: 2826481
Free article

The purification and properties of deoxyguanosine triphosphate triphosphohydrolase from Escherichia coli

D Seto et al. J Biol Chem. .
Free article

Abstract

Deoxyguanosine triphosphate (dGTP) triphosphohydrolase (EC 3.1.5.1) has been purified approximately 16,000-fold to apparent homogeneity from extracts of Escherichia coli. The enzyme has a native molecular weight of 230,000 and a sedimentation coefficient of 9.3 S. Its subunit molecular weight derived from electrophoresis in denaturing polyacrylamide gels is 58,900, and it has a unique N-terminal sequence for the first 25 amino acids, which indicate that the native enzyme is composed of 4 homologous subunits. It is insensitive to sulfhydryl reagents and EDTA and can be heated to 60 degrees C for 60 min without loss of activity. The enzyme requires Mg2+ for activity, is highly specific for dGTP among the canonical deoxynucleoside triphosphates, and has a unique activity among nucleoside triphosphatases in that the products of the reaction are deoxyguanosine and inorganic tripolyphosphate. Preliminary evidence suggest that this enzyme is responsible for the optA mutant phenotype first described by Saito and Richardson (Saito, H., and Richardson, C.C. (1981) J. Virol. 37, 343-351).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources