Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Mar 1:39:3.
doi: 10.1186/s41021-016-0069-1. eCollection 2017.

Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice

Affiliations
Review

Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice

Keiko Nohara et al. Genes Environ. .

Abstract

The consequences of early-life exposure to chemicals in the environment are emerging concerns. Chronic exposure to naturally occurring inorganic arsenic has been known to cause various adverse health effects, including cancers, in humans. On the other hand, animal studies by Dr. M. Waalkes' group reported that arsenite exposure of pregnant F0 females, only from gestational day 8 to 18, increased hepatic tumors in the F1 (arsenite-F1) males of C3H mice, whose males tend to develop spontaneous hepatic tumors later in life. Since this mice model illuminated novel unidentified consequences of arsenic exposure, we wished to further investigate the background mechanisms. In the same experimental model, we identified a variety of factors that were affected by gestational arsenic exposure, including epigenetic and genetic changes, as possible constituents of multiple steps of late-onset hepatic tumor augmentation in arsenite-F1 males. Furthermore, our study discovered that the F2 males born to arsenite-F1 males developed hepatic tumors at a significantly higher rate than the control F2 males. The results imply that the tumor augmenting effect is inherited by arsenite-F2 males through the sperm of arsenite-F1. In this article, we summarized our studies on the consequences of gestational arsenite exposure in F1 and F2 mice to discuss novel aspects of biological effects of gestational arsenic exposure.

Keywords: Arsenic; F2; Gestational exposure; Hepatic tumor; Multigenerational.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Late-onset changes in gene expression in the non-tumor-bearing livers of F1 male mice gestationally exposed to arsenic. Expression of four genes in the livers of control and gestationally arsenic-exposed mice was measured by real-time PCR at 6, 49, and 74 weeks of age and normalized to the expression of cyclophilin B (CPB). The graphs show the ratio of expression in the arsenic group normalized to expression in the control group. The data shown are the means ± S.E. (n = 11 for 6 w, n = 4 for 49 w, n = 8 for 74 w). * significant difference between the two groups at p < 0.05 (21)
Fig. 2
Fig. 2
Increased Line-1 RNA expression in the livers of adult F1 male mice gestationally exposed to arsenic. Expression of ORF1 and ORF2 in normal adult livers, normal tissue from tumor-bearing livers, and tumor tissue from tumor-bearing livers were measured by real-time PCR and normalized to the expression of CPB. Results are reported as means ± S.E. (n = 6). * significant difference between the two groups at p < 0.05 (21)
Fig. 3
Fig. 3
Possible actions of gestationally exposed arsenic in the hepatic tumorigenesis in F1 mice (22)
Fig. 4
Fig. 4
Increase in the tumor incidence in the F2 male offspring born to arsetite-F1 males but not to ansenite-F1 females. The F2 mice were macroscopically examined for hepatic tumors at 75-82 weeks of age in an age-matched manner (23). The difference between the tumor incidences in the two groups was analyzed by chi-square test

Similar articles

Cited by

References

    1. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci. 2011;123:305–332. doi: 10.1093/toxsci/kfr184. - DOI - PMC - PubMed
    1. Bhattacharjee P, Paul S. Risk of occupational exposure to asbestos, silicon and arsenic on pulmonary disorders: Understanding the genetic-epigenetic interplay and future prospects. Environ Res. 2016;147:425–434. doi: 10.1016/j.envres.2016.02.038. - DOI - PubMed
    1. Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM. Arsenic and human health effects: A review. Env Tox Pharmacol. 2015;40:828–846. doi: 10.1016/j.etap.2015.09.016. - DOI - PubMed
    1. Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, et al. Mechanisms underlying latent disease risk associated with early-life arsenic exposure: Current research trends and scientific gaps. Environ Health Perspect. 2016;124:170–175. - PMC - PubMed
    1. IARC (International Agency for Research on Cancer) Arsenic, metals, fibres and dusts. Arsenic and arsenic compounds. IARC Monogr Eval Carciong Risks Hum. 2012;100C:41–93.

LinkOut - more resources