Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography
- PMID: 28266502
- PMCID: PMC5339709
- DOI: 10.1038/srep42353
Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography
Abstract
Nonlinear sampling of the interferograms in wavenumber (k) space degrades the depth-dependent signal sensitivity in conventional spectral domain optical coherence tomography (SD-OCT). Here we report a linear-in-wavenumber (k-space) spectrometer for an ultra-broad bandwidth (760 nm-920 nm) SD-OCT, whereby a combination of a grating and a prism serves as the dispersion group. Quantitative ray tracing is applied to optimize the linearity and minimize the optical path differences for the dispersed wavenumbers. Zemax simulation is used to fit the point spread functions to the rectangular shape of the pixels of the line-scan camera and to improve the pixel sampling rates. An experimental SD-OCT is built to test and compare the performance of the k-space spectrometer with that of a conventional one. Design results demonstrate that this k-space spectrometer can reduce the nonlinearity error in k-space from 14.86% to 0.47% (by approximately 30 times) compared to the conventional spectrometer. The 95% confidence interval for RMS diameters is 5.48 ± 1.76 μm-significantly smaller than both the pixel size (14 μm × 28 μm) and the Airy disc (25.82 μm in diameter, calculated at the wavenumber of 7.548 μm-1). Test results demonstrate that the fall-off curve from the k-space spectrometer exhibits much less decay (maximum as -5.20 dB) than the conventional spectrometer (maximum as -16.84 dB) over the whole imaging depth (2.2 mm).
Conflict of interest statement
The authors declare no competing financial interests.
Figures



Similar articles
-
Design and Optimization of a Linear Wavenumber Spectrometer with Cylindrical Optics for Line Scanning Optical Coherence Tomography.Sensors (Basel). 2021 Sep 28;21(19):6463. doi: 10.3390/s21196463. Sensors (Basel). 2021. PMID: 34640783 Free PMC article.
-
Design of a Linear Wavenumber Spectrometer for Line Scanning Optical Coherence Tomography with 50 mm Focal Length Cylindrical Optics.Sensors (Basel). 2022 Apr 25;22(9):3278. doi: 10.3390/s22093278. Sensors (Basel). 2022. PMID: 35590968 Free PMC article.
-
Full-range k-domain linearization in spectral-domain optical coherence tomography.Appl Opt. 2011 Mar 10;50(8):1158-63. doi: 10.1364/AO.50.001158. Appl Opt. 2011. PMID: 21394187 Free PMC article.
-
Spectral domain optical coherence tomography: a better OCT imaging strategy.Biotechniques. 2005 Dec;39(6 Suppl):S6-13. doi: 10.2144/000112090. Biotechniques. 2005. PMID: 20158503 Review.
-
The Lucy Thermal Emission Spectrometer (L'TES) Instrument.Space Sci Rev. 2024;220(1):1. doi: 10.1007/s11214-023-01029-y. Epub 2023 Dec 19. Space Sci Rev. 2024. PMID: 38130909 Free PMC article. Review.
Cited by
-
Hyperspectral optical coherence tomography for in vivo visualization of melanin in the retinal pigment epithelium.J Biophotonics. 2019 Dec;12(12):e201900153. doi: 10.1002/jbio.201900153. Epub 2019 Aug 13. J Biophotonics. 2019. PMID: 31334610 Free PMC article.
-
In vivo corneal elastography: A topical review of challenges and opportunities.Comput Struct Biotechnol J. 2023 Apr 13;21:2664-2687. doi: 10.1016/j.csbj.2023.04.009. eCollection 2023. Comput Struct Biotechnol J. 2023. PMID: 37181662 Free PMC article. Review.
-
Micron-scale hysteresis measurement using dynamic optical coherence elastography.Biomed Opt Express. 2022 Apr 25;13(5):3021-3041. doi: 10.1364/BOE.457617. eCollection 2022 May 1. Biomed Opt Express. 2022. PMID: 35774312 Free PMC article.
-
Spectrally dependent roll-off in visible-light optical coherence tomography.Opt Lett. 2020 May 1;45(9):2680-2683. doi: 10.1364/OL.389240. Opt Lett. 2020. PMID: 32356845 Free PMC article.
-
Optical Fiber Grating-Prism Fabrication by Imprint Patterning of Ionic-Liquid-Based Resist.Int J Mol Sci. 2023 Jan 10;24(2):1370. doi: 10.3390/ijms24021370. Int J Mol Sci. 2023. PMID: 36674882 Free PMC article.
References
-
- Fercher A. F., Hitzenberger C. K., Kamp G. & Elzaiat S. Y. Measurement of Intraocular Distances by Backscattering Spectral Interferometry. Opt Commun 117, 43–48, doi: 10.1016/0030-4018(95)00119-S (1995). - DOI
-
- Tomlins P. H. & Wang R. K. Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 38, 2519–2535, doi: 10.1088/0022-3727/38/15/002 (2005). - DOI
-
- Izatt J. & Choma M. In Optical coherence tomography 47–72 (Springer, 2008).
-
- Dorrer C., Belabas N., Likforman J. P. & Joffre M. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J Opt Soc Am B 17, 1795–1802, doi: 10.1364/Josab.17.001795 (2000). - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous