Integration of SNPs-FMRI-methylation data with sparse multi-CCA for schizophrenia study
- PMID: 28269013
- DOI: 10.1109/EMBC.2016.7591436
Integration of SNPs-FMRI-methylation data with sparse multi-CCA for schizophrenia study
Abstract
Schizophrenia (SZ) is a complex mental disorder associated with genetic variations, brain development and activities, and environmental factors. There is an increasing interest in combining genetic, epigenetic and neuroimaging datasets to explore different level of biomarkers for the correlation and interaction between these diverse factors. Sparse Multi-Canonical Correlation Analysis (sMCCA) is a powerful tool that can analyze the correlation of three or more datasets. In this paper, we propose the sMCCA model for imaging genomics study. We show the advantage of sMCCA over sparse CCA (sCCA) through the simulation testing, and further apply it to the analysis of real data (SNPs, fMRI and methylation) from schizophrenia study. Some new genes and brain regions related to SZ disease are discovered by sMCCA and the relationships among these biomarkers are further discussed.
Similar articles
-
Adaptive Sparse Multiple Canonical Correlation Analysis With Application to Imaging (Epi)Genomics Study of Schizophrenia.IEEE Trans Biomed Eng. 2018 Feb;65(2):390-399. doi: 10.1109/TBME.2017.2771483. IEEE Trans Biomed Eng. 2018. PMID: 29364120 Free PMC article.
-
Correspondence between fMRI and SNP data by group sparse canonical correlation analysis.Med Image Anal. 2014 Aug;18(6):891-902. doi: 10.1016/j.media.2013.10.010. Epub 2013 Oct 31. Med Image Anal. 2014. PMID: 24247004 Free PMC article.
-
Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization.IEEE/ACM Trans Comput Biol Bioinform. 2020 Sep-Oct;17(5):1671-1681. doi: 10.1109/TCBB.2019.2899568. Epub 2019 Feb 14. IEEE/ACM Trans Comput Biol Bioinform. 2020. PMID: 30762565 Free PMC article.
-
Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges.Int J Mol Sci. 2018 Jan 11;19(1):219. doi: 10.3390/ijms19010219. Int J Mol Sci. 2018. PMID: 29324666 Free PMC article. Review.
-
Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs.Neuroimage. 2014 Nov 15;102 Pt 1:220-8. doi: 10.1016/j.neuroimage.2014.01.021. Epub 2014 Feb 12. Neuroimage. 2014. PMID: 24530838 Free PMC article. Review.
Cited by
-
On statistical inference with high-dimensional sparse CCA.Inf inference. 2023 Nov 17;12(4):iaad040. doi: 10.1093/imaiai/iaad040. eCollection 2023 Dec. Inf inference. 2023. PMID: 37982049 Free PMC article.
-
Canonical Correlation Analysis of Imaging Genetics Data Based on Statistical Independence and Structural Sparsity.IEEE J Biomed Health Inform. 2020 Sep;24(9):2621-2629. doi: 10.1109/JBHI.2020.2972581. Epub 2020 Feb 10. IEEE J Biomed Health Inform. 2020. PMID: 32071012 Free PMC article.
-
A technical review of canonical correlation analysis for neuroscience applications.Hum Brain Mapp. 2020 Sep;41(13):3807-3833. doi: 10.1002/hbm.25090. Epub 2020 Jun 27. Hum Brain Mapp. 2020. PMID: 32592530 Free PMC article.
-
Interpretable Multimodal Fusion Networks Reveal Mechanisms of Brain Cognition.IEEE Trans Med Imaging. 2021 May;40(5):1474-1483. doi: 10.1109/TMI.2021.3057635. Epub 2021 Apr 30. IEEE Trans Med Imaging. 2021. PMID: 33556002 Free PMC article.
-
Group Sparse Joint Non-Negative Matrix Factorization on Orthogonal Subspace for Multi-Modal Imaging Genetics Data Analysis.IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):479-490. doi: 10.1109/TCBB.2020.2999397. Epub 2022 Feb 3. IEEE/ACM Trans Comput Biol Bioinform. 2022. PMID: 32750856 Free PMC article.
MeSH terms
Grants and funding
LinkOut - more resources
Other Literature Sources
Medical
Research Materials