Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987;27(4-6):845-9.
doi: 10.1016/0022-4731(87)90158-0.

Glycyrrhizic acid and its hydrolysate as mineralocorticoid agonist

Affiliations

Glycyrrhizic acid and its hydrolysate as mineralocorticoid agonist

R Takeda et al. J Steroid Biochem. 1987.

Abstract

Mineralocorticoid activity of glycyrrhetinic acid (GR) was studied in vivo (electrical potential difference in rat rectum) and in vitro (brush border Mg2+-HCO3- ATPase in rat small intestine, kidney cytosol binding of GR with and without RU-28362, anti-glucocorticoid compound) in order to clarify the mechanism of mineralocorticoid-like activity of GR. Scatchard analysis of [3H]aldosterone showed that Kd of higher affinity site (type I) 6.0 X 10(-9) M, Bmax 1.0 X 10(-14) mol/mg protein, and Kd of lower affinity site (type II) 1.6 X 10(-7) M, Bmax 7.5 X 10(-14) mol/mg protein. GR competed for [3H]aldosterone binding sites in kidney cytosol at the concentration of 10(4) times as that of unlabeled aldosterone. RU-28362 displaced aldosterone binding curve, whereas GR binding kinetic was not affected by this compound. Adrenalectomy caused a significant fall in brush border Mg2+-HCO3- ATPase activity (75% reduction compared with the initial level) which was not restored by GR administration. Electrical potential differences in the adrenalecomized rats were significantly lower than those in the control rats, which did not increase after GR administration.

PubMed Disclaimer

Publication types

MeSH terms