Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017;19(1):11-20.
doi: 10.3233/CBM-160167.

microRNA-203 suppresses invasion of gastric cancer cells by targeting ERK1/2/Slug/ E-cadherin signaling

Affiliations
Free article

microRNA-203 suppresses invasion of gastric cancer cells by targeting ERK1/2/Slug/ E-cadherin signaling

Peng Gao et al. Cancer Biomark. 2017.
Free article

Abstract

Background and aims: Growing evidence suggests that microRNA plays an essential role in the development and metastasis of many tumors, including gastric cancer (GC). Expression of microRNA-203 (miR-203) has been reported to decrease in GC. In addition, overexpression of miR-203 inhibits grow of GC cells in vitro and in vivo. However, whether miR-203 affects cell migration and invasion of GC remains unclear. This study aimed to reveal the role of miR-203 on migration and invasion of GC, and its potential mechanisms.

Methods: Synthetic pre-miR-203 (miR-203), anti-miR-203 and scrambled negative control RNAs was transfected into the gastric cancer SGC7901 cells to generate miR-203 or anti-miR-203-transfected stable clones. The roles of miR-203 on cell invasion and motility were then analyzed by Transwell migration assay and Wound healing assay in vitro. Using siRNA to targeting ERK1/2, Slug, and E-cadherin or Slug cDNA transfection (to increase Slug expression) to examine the miR-203 signaling pathway. We also examined the efficacies of miR-203 or anti-miR-203 on peritoneal metastasis of SGC7901 cells in the nude mouse model.

Results: Overexpression of miR-203 inhibits SGC7901 cell invasion and motility, followed by decreased phospho-ERK1/2 (pERK1/2) and Slug expression, as well as increased E-cadherin expression. Re-expression of Slug in miR-203/SGC7901cells decreased E-cadherin expression and restored the invasive phenotypes. Targeting E-cadherin in miR-203/SGC7901cells also restored the invasive phenotypes. Inhibition of miR-203 promotes SGC7901 cell invasion and motility, followed by increased phospho-ERK1/2 (pERK1/2) and Slug expression, as well as decreased E-cadherin expression. Targeting ERK1/2 or Slug in anti-miR-203/SGC7901cells increased E-cadherin expression and reversed the invasive phenotypes. In addition, targeting ERK1/2 decreased Slug and increased the E-cadherin expression. Significantly, we found that miR-203 could exert marked inhibition of the peritoneal metastasis of SGC7901 in nude mice in vivo. Targeting miR-203 could exert marked promotion of the peritoneal metastasis of SGC7901 in nude mice in vivo.

Conclusions: miR-203/ERK1/2/Slug/E-cadherin signaling pathway plays an essential role on SGC7901 cell invasion and motility. miR-203 can be novel modalities to prevent peritoneal metastasis of invasive cancers such as gastric cancer.

Keywords: Gastric cancer; extracellular signal-regulated kinase (ERK); invasion; microRNA-203; slug.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources