Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun;214(4):1551-1562.
doi: 10.1111/nph.14515. Epub 2017 Mar 8.

Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of 13 C metabolomics

Affiliations
Free article

Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of 13 C metabolomics

Katie E Hillyer et al. New Phytol. 2017 Jun.
Free article

Abstract

Coral bleaching is a major threat to the persistence of coral reefs. Yet we lack detailed knowledge of the metabolic interactions that determine symbiosis function and bleaching-induced change. We mapped autotrophic carbon fate within the free metabolite pools of both partners of a model cnidarian-dinoflagellate symbiosis (Aiptasia-Symbiodinium) during exposure to thermal stress via the stable isotope tracer (13 C bicarbonate), coupled to GC-MS. Symbiont photodamage and pronounced bleaching coincided with substantial increases in the turnover of non13 C-labelled pools in the dinoflagellate (lipid and starch store catabolism). However, 13 C enrichment of multiple compounds associated with ongoing carbon fixation and de novo biosynthesis pathways was maintained (glucose, fatty acid and lipogenesis intermediates). Minimal change was also observed in host pools of 13 C-enriched glucose (a major symbiont-derived mobile product). However, host pathways downstream showed altered carbon fate and/or pool composition, with accumulation of compatible solutes and nonenzymic antioxidant precursors. In hospite symbionts continue to provide mobile products to the host, but at a significant cost to themselves, necessitating the mobilization of energy stores. These data highlight the need to further elucidate the role of metabolic interactions between symbiotic partners, during the process of thermal acclimation and coral bleaching.

Keywords: Aiptasia; Symbiodinium; GC-MS; coral bleaching; metabolomics; photodamage; stable isotope tracer; translocation.

PubMed Disclaimer

LinkOut - more resources