Biochemical Assessment of Coenzyme Q10 Deficiency
- PMID: 28273876
- PMCID: PMC5372996
- DOI: 10.3390/jcm6030027
Biochemical Assessment of Coenzyme Q10 Deficiency
Abstract
Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA) depletion and mutations in genes involved in the fatty acid β-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors.
Keywords: CoQ10 biosynthesis; CoQ10 deficiency syndrome; coenzyme Q10; mitochondria diseases.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Lapuente-Brun E., Moreno-Loshuertos R., Acin-Perez R., Latorre-Pellicer A., Colas C., Balsa E., Perales-Clemente E., Quiros P.M., Calvo E., Rodriguez-Hernandez M.A., et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340:1567–1570. doi: 10.1126/science.1230381. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
