Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1987 Nov 3;26(22):7029-35.
doi: 10.1021/bi00396a026.

Spinach chloroplast fructose-1,6-bisphosphatase: identification of the subtilisin-sensitive region and of conserved histidines

Affiliations
Comparative Study

Spinach chloroplast fructose-1,6-bisphosphatase: identification of the subtilisin-sensitive region and of conserved histidines

F Marcus et al. Biochemistry. .

Abstract

Chloroplast fructose-1,6-bisphosphatase (FbPase) is an essential enzyme in the photosynthetic pathway of carbon dioxide fixation into sugars. The properties of the chloroplast enzyme are clearly distinct from those of cytosolic gluconeogenic FbPases. Light-dependent activation via a ferredoxin/thioredoxin system and insensitivity to inhibition by AMP are unique characteristics of the chloroplast enzyme. However, preliminary amino acid sequence data (78 residues) have demonstrated that a significant degree of amino acid sequence similarity exists between spinach chloroplast and mammalian gluconeogenic fructose-1,6-bisphosphatase [Harrsch, P.B., Kim, Y., Fox, J.L., & Marcus, F. (1985) Biochem. Biophys. Res. Commun. 133, 520-526]. In the present study, we have identified two structural features of spinach chloroplast FbPase that appear to be common to all FbPases. These include (a) the presence of a protease-sensitive area located in a region equivalent to residues 51-71 of mammalian FbPases and (b) the recognition of two conserved histidine residues, equivalent to histidines-253 and -311 of the mammalian enzymes. In addition, we have obtained sequence information accounting for more than three-fourths of the primary structure of spinach chloroplast FbPase. The high degree of homology observed between the chloroplast enzyme and gluconeogenic FbPases suggests a common evolutionary origin for all fructose-1,6-bisphosphatases in spite of their different functions and modes of regulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types