Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May;13(5):425-437.
doi: 10.1080/1744666X.2017.1298443. Epub 2017 Mar 15.

Commonality of the IL-4/IL-13 pathway in atopic diseases

Affiliations
Review

Commonality of the IL-4/IL-13 pathway in atopic diseases

Namita A Gandhi et al. Expert Rev Clin Immunol. 2017 May.

Abstract

Allergy results from an aberrant Type 2 inflammatory response, triggered by a wide range of environmental antigens (allergens) that lead to various immune responses, culminating in the production of immunoglobulin E (IgE). Two key cytokines, interleukin (IL)-4 and IL-13, are critical to the induction and perpetuation of the Type 2 response, and have been implicated in multiple atopic diseases. Area covered: This review summarizes recent milestone developments that have elucidated components of the pathogenesis of atopic diseases such as atopic dermatitis (AD), asthma, and chronic sinusitis with nasal polyposis (CSwNP). Expert commentary: Several therapeutic agents that selectively target potentiators of the Type 2 pathway have shown efficacy in one or more of these atopic diseases, but few agents have proven to be broadly applicable across all three atopic diseases. Dupilumab, a human monoclonal antibody that simultaneously inhibits signaling of IL-4 and IL-13, has demonstrated significant clinical efficacy in AD, asthma, and CSwNP. The fact that these diseases often occur as comorbidities and respond to the same therapy suggests that there is a common underlying pathogenic pathway, and that IL-4 and IL-13 cytokines are central to regulating the pathogenesis of these atopic diseases.

Keywords: Type 2 pathway; asthma; atopic dermatitis; dupilumab; interleukin-13; interleukin-4; lebrikizumab; nasal polyposis; tralokinumab.

PubMed Disclaimer

Publication types