Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 4;474(10):1653-1668.
doi: 10.1042/BCJ20160304.

USP7 deubiquitinase controls HIV-1 production by stabilizing Tat protein

Affiliations

USP7 deubiquitinase controls HIV-1 production by stabilizing Tat protein

Amjad Ali et al. Biochem J. .

Abstract

Deubiquitinases (DUBs) are key regulators of complex cellular processes. HIV-1 Tat is synthesized early after infection and is mainly responsible for enhancing viral production. Here, we report that one of the DUBs, USP7, stabilized the HIV-1 Tat protein through its deubiquitination. Treatment with either a general DUB inhibitor (PR-619) or USP7-specific inhibitor (P5091) resulted in Tat protein degradation. The USP7-specific inhibitor reduced virus production in a latently infected T-lymphocytic cell line J1.1, which produces large amounts of HIV-1 upon stimulation. A potent increase in Tat-mediated HIV-1 production was observed with USP7 in a dose-dependent manner. As expected, deletion of the USP7 gene using the CRISPR-Cas9 method reduced the Tat protein and supported less virus production. Interestingly, the levels of endogenous USP7 increased after HIV-1 infection in human T-cells (MOLT-3) and in mammalian cells transfected with HIV-1 proviral DNA. Thus, HIV-1 Tat is stabilized by the host cell deubiquitinase USP7, leading to enhanced viral production, and HIV-1 in turn up-regulates the USP7 protein level.

Keywords: HIV-1; deubiquitination; protein degradation; transactivation.

PubMed Disclaimer

Publication types

MeSH terms